Adpversarial Feature Matching for Text Generation

A. Additional results
A.1. RNN specifications

We leverage a LSTM RNN for our generator. Each LSTM
unit has a cell containing a state ¢; at time ¢. Reading or
writing the memory unit is controlled through sigmoid gates,
namely, input gate ¢, forget gate g;, and output gate o,. The
hidden units h, are updated as follows:

i =0(Wy—1 + Uhy_1 + C;2) 9
gt = 0(Wey;—1 +Ughy_1 + Cy2) (10
0 =0(Woyi—1+ Ushi 1 + C,z) (11)
¢ = tanh(W_ ys—1 + Uchy—1 + C.2) (12)
Ct=9:0¢c1+4OC¢ (13)
h; = o; ©® tanh(c;) , (14)

where o(-) denotes the logistic sigmoid function, and ®
represents the element-wise multiply operator (Hadamard
product). Wy o601, Ui go.cps Chigoey, V and C are
the set of parameters. Note that z is used as an explicit input
at each time step of the LSTM to guide the generation of s.
Another remark is that all the randomness in the generator
come from z. The synthetic sentence $ is deterministically
obtained given z.

A.2. Universality of the embedded kernel

In below we consider the universality of a kernel defined
on the input space X, constructed by a universal kernel on
feature space F.

Proposition 1. Suppose a continuous universal kernel k :
F x F — R is a universal kernel. If a space X has a
continuous bijective mapping X : X — F, the composed
kernelk : X xX — R, such that forNx,z' € X, k(z,z') =
kE(f(x), f(z")) is a universal kernel define on X.

Proof. Denote N,, = {1,2,--- ,n}. Since k is a universal
kernel, from Micchelli et al. (2006), k is continuous and its
RKHS # is dense in C(F) £ {g : F — R|gcontinuous},
i.e., for any n points { f; }ien, € F, for Vg € C(F), there
exists a; : ¢ € N,, that

9() =Y aik(fi,-), (15)

1€EN,,

where k(f;,-) € H. This is known as the universal approx-
imation property. Since ) is a bijective function, consider
any {z;};en, € X. By construction, for Vh € C(X) £
h : X — R|hcontinuous, consider g = h o A~1, from (15)

we have
h(z) = (A~ (A(2))) = g(A(z)) (16)
= Z aik:(/\(xi), ) = Z aiff(l‘i, ) (17)
ieN, ieN,
Hence the k is a universal kernel. O

A.3. Alternative upper bound objective

In this subsection we show that (5) corresponds to an upper
bound of the JSD between two Gaussian distribution.

Proof. The KL divergence D (p||q) between two multi-
variate Gaussian distribution p(z) ~ N (p, 2) and g(z) ~

N (f,X) is given by
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We first start with a proposition.

Proposition 2. Assume three arbitrary valid continuous
density functions p,q,r has probability measures over
a domain X, we have that Dk, (p|lq) + Dkr(pllr) >
Dk (pll(q+7)/2).

The proof is as follows.
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= Dkr(pll(qg+7)/2). (23)

From (19) and (23), following the definition of JSD, we
have
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Therefore, (5) is an upper bound for 2JSD(p||q). Di-
rectly minimizing J.SD(p||q) is hard, however (5) is more
tractable. O
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Figure 4. Left: learning curve for TextGAN. Right: validation
BLEU-2 score.

A.4. VAE and KL divergence annealing

In VAE we optimize the lower bound objective below.

£ = By(oyn) log p(e]2) + 0By log p(z) — log g(zl)].

where « is a scaling parameter. We observed that directly
minimizing the above objective with a = 1 would fail
to converge. Thus we train the VAE under an annealing
scheme, where o is set to be min(¢/50, 000, 1) and ¢ is the
number of iterations that has been performed.

A.5. Feature matching results

The covariance matrices of real features f and synthetic
features f are shown Figure 5. Each of the covariance
matrices is computed over 2,000 data points. Learning
curves are shown in Figure 4.

A.6. Experimental setup

To accelerate convergence, we begin each run with a warm-
up training. Specifically, This warm-up includes: (i) us-
ing a mean matching objective for the generator loss, i.e.,
|[Ef —Ef||?, as in Salimans et al. (2016); (ii) trimming the
generated sentences if the length exceeds 15, by removing
words afterwards. For MMD Gaussian kernel, we set the
bandwidth parameters as [10, 15, 20, 25, 30] in our experi-
ments. The L used in soft-argmax is 10, 000. The A, and
Am are set to be 0.01 and 0.001. The activation function
employed in discriminator/encoder is hyperbolic tangent
function. We also utilized several other training techniques
in order to stabilize training, including soft-labeling (Sali-
mans et al., 2016) and batch normalization (Ioffe & Szegedy,
2015). For soft-labeling the discriminator is constraint to
maximally assign 0.99 and minimally assign 0.01 for the
probability of being from real data. The batch normaliza-
tion is added on the CNN output before activation function.
In practice we find batchnorm does not provide significant
performance benefits.

Figure 5. Covariance matching. Upper: synthetic features covari-
ance. Lower: real features covariance.
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