
1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Appendix for Stochastic Gradient Monomial Gamma Sampler

A. The Main Theorem
We provide the following theorem to characterize the sta-

tionary distribution of the stochastic process with SDEs in

(12).

Theorem 3. The stochastic process generated from SDEs
(12) converges to a stationary distribution p(�) /
exp(�H(�)), where H(�) is defined as in (9).

Proof. We first show that the Fokker-Planck equation holds

for the proposed SDE and probability density p(�),

r� · p(�)V (�) = r�rT

� : [p(�)D(�)]

Here the r , (@/@✓, @/@p, @/@⇠). · represents a vector

inner product and : denotes the matrix double dot product,

i.e., X : Y = Tr(XTY ). In order to show FP equation

holds, we look at both side of the equation.

The left hand side can be written as

r� · p(�)V (�)

= [

@V (�)

@�
� @H(�)

@�
V (�)]p(�)

= {�
✓

[(rU(✓))2 �r2U(✓)]

+�
p

[(rK(p))2 �r2K(p)]

+�
⇠

[(rF (⇠))2 �r2F (⇠)]}p(�)

For the right hand side,

r�rT

� : [p(�)D(�)]

= �
✓

rrT

: p(�) + �
p

rrT

: p(�) + �
⇠

rrT

: p(�)

= {�
✓

[(rU(✓))2 �r2U(✓)]

+�
p

[(rK(p))2 �r2K(p)]

+�
⇠

[(rF (⇠))2 �r2F (⇠)]}p(�)

For stationary distribution,

@p(�, t)

@t
= 0

As a result, the equality in (13) holds. The stochastic pro-

cess defined by (12) is preserved by the dynamic. Alterna-

tively, one can leverage the recipe from (Ma et al., 2015) to

recover the same conclusion, by setting semi-definite ma-

trix D = Diag([�
✓

,�
p

,�
⇠

]) and skew-symmetric Q to be

0

@
0 �I 0

I 0 �rK(p)
0 ��rK(p) 0

1

A

Note that under the softened kinetics, the K
c

(p) is twice

differentiable, and rK
c

(p) is Lipschitz continuous. Thus

the Fokker-Planck equation holds, leading to a stationary

distribution invariant to target distribution. Another remark

is that the resampling process for p and ⇠ will still lead to

the same invariante distribution p(�), since the resampling

process is directly drawing sample from the marginal distri-

bution. Finally, it can be proved that the corresponding Itˆo

diffusion of our algorithm in (12) is non-reversible. This

speed up the convergence speed to equilibrium, because it

is known that a reversible process convergences slower than

its non-reversible counter part (Hwang et al., 2005).

B. Details for softened kinetics
We provide the details for the derivation of softened kinet-

ics. Note that in the SDE (12), only rK
c

(p) and r2K
c

(p)
is involved. For a = 1, we consider

K
c

(p) = �g(p) + 2/c log(1 + ecg(p)), (13)

g(p) = p/m.

which gives

rK
c

(p) = 1
m

 (g(p)),

r2K
c

(p) = 1
m

2 0
(g(p)).

Where,  (x) =

e

cx�1
e

cx+1 is the hyperbolic tangent function

(tanh) with the softening parameter c,  0
(x) = 2ce

cx

(ecx+1)2 .

For a = 2, we consider

K
c

(p) = g(p) +
4

c(1 + ecg(p))
, (14)

g(p) = |p|1/2/m.

which gives

rK
c

(p) =

1
2m sign(p) (g(p))2|p|�1/2,

r2K
c

(p) =

1
2m2 (g(p)) 0

(g(p))|p|�1

� 1
4m 

2
(g(p))|p|�3/2.

In general, for arbitrary a, we consider setting the

rK
c

(p) =
a

m
 (g(p))a|p|�1/a,
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Stochastic Gradient Monomial Gamma Sampler

Such specification will yield a differentiable softened kinet-

ics function by computing the integral, which is tractable

for positive value of a. However, in practice, as suggested

by (Zhang et al., 2016) the optimal a would usually be-

tween [0.5, 2]. We would suggest consider using a = 1 or

a = 2 for general inference tasks.

C. Synthetic multi-well potential problem
The five-well potential is defined as:

U(✓) , e
3
4 ✓

2� 3
2

P10
i=1 ci sin( 1

4⇡i(✓+4)
) ,

where c = (�0.47,�0.83,�0.71,�0.02, 0.24, 0.01, 0.27,
� 0.37, 0.87,�0.37) is a vector, c

i

is the i-th element of c.

D. Symmetric Splitting Integrators for
SGMGT

The first-ordered Euler integration results in high dis-

cretization error in Hamiltonian dynamic updating of

HMC. In (Chen et al., 2016), a symmetric splitting scheme

is leveraged to reduce the numerical error. We applied the

softened kinetics K
c

(p), and set F (⇠) as

(⇠��p)
2

2� . In this

symmetric splitting scheme, the Hamiltonian is split into

sub-componenents, and for each sub-componenents an in-

dividual SDE is applied on. The resulting discretization is

symplectic and second-ordered:

A : d� =

0

@
��

✓

r ˜U(✓) +rK
c

(p)
0

f(�)

1

A dt/2

B : d� =

0

@
0

�⇠ ·rK
c

(p)
0

1

A dt/2

O : d� =

0

@
0

�r ˜U(✓)
0

1

A dt+D(�)dW

Here we denote f(�) , �[(rK
c

(p))2 � (r2K
c

(p))] �
�⇠

�

(⇠ � �
p

) for clarity. The sub-SDE under sub-SDE B

is analytically solvable. Following (Chen et al., 2015),

for a 6= 1/2, the updating procedure follows an ABOBA

Table 4. Experimental setup for discriminative RBM

Algorithms �
p

�
✓

�
⇠

� c h

SGNHT 10 - - 1 - 2e-4

SGNHT-D 10 0.1 0.1 1 - 2e-4

SGMGT-D (a=1) 10 0.1 0.1 1 3 1e-5

SGMGT-D (a=2) 10 0.1 0.1 1 5 5e-5

scheme, given by

A : ✓
t+1/3 = ✓

t

+rK
c

(p)h/2, ⇠
t+1/3 = ⇠

t

+ f(�)h/2

B : p
t+1/3 = [p(2a�1)/a

t

� 2a� 1

a2
⇠
t+1/2h/2]

a/(2a�1)

O : ✓
t+2/3 = ✓

t+1/3 +
p
2�

✓

✏
✓

p
t+2/3 = p

t+1/3 �r ˜U(✓))h/2 +
p

2�
p

✏
p

,

⇠
t+2/3 = ⇠

t+1/3 +
p
2�

⇠

✏
⇠

B : p
t+1 = [p(2a�1)/a

t+2/3 � 2a� 1

a2
⇠
t+2/3h/2]

a/(2a�1)

A : ✓
t+1 = ✓

t+2/3 +rK
c

(p)h/2, ⇠
t+1 = ⇠

t+2/3 + f(�)h/2

When a = 1/2, it follows the splitting scheme with stan-

dard SGNHT (Chen et al., 2015).

E. Experimental setups for DRBM
The hyper-parameter setups for the DRBM experiments are

provided as below. We select the hyperparameters based

on the performance on validation dataset. The algorithm

will be early stopped if the validation error start to increase.

The selection is based on a grid search. For �
p

, �
⇠

and �
✓

we select from {0.001, 0.01, 0.1, 1, 10}. For the softening

parameter c we select from {3, 5, 8}. We fixed the m = 1

and � = 1. The stepsize is chosen from {1e � 5, 2e �
5, 5e� 5, 1e� 4, 2e� 4, 5e� 4}. The T

p

and T
⇠

are set as

100 and 100, respectively.

For SGLD, we use a stepsize of 1e� 5

F. Experimental setups for RNNs
The hyper-parameter setups for the RNNs experiments are

similar to the DRBM experiments. For �
p

, �
⇠

and �
✓

we

select from {0.01, 0.1, 1, 10}. For the softening parameter

c we select from {3, 5, 8}. We fixed the m = 1 and � = 1.

The stepsize of SGMGT-D/SGMGT is chosen from {1e�
3, 1.5e � 3, 2e � 3, 2.5e � 3, 3e � 3}. The T

p

and T
⇠

are

set as 100 and 100, respectively. We also incorporate a

decay scheme for stepsize, i.e. the stepsize is divided by

a decaying factor ↵ = 1.1 for each scan of dataset (i.e.
each epoch). The gradient estimated on a subset of data is

clipped to have a maximum value of 5 as in (Chen et al.,

2016) for each dimension to prevent updates from a large
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Stochastic Gradient Monomial Gamma Sampler

Table 5. Experimental setup for discriminative RNNs

Algorithms m �
p

�
✓

�
⇠

� c

SGNHT 1 10 - - 1 -

SGNHT-D 1 10 0.01 0.01 1 -

SGMGT/SGMGT-D (a=1) 1 10 0.1 0.01 1 5

SGMGT/SGMGT-D (a=2) 1 10 0.1 0.01 1 3

gradient value to blow up the objective loss. For JSB we

use a stepsize of 2e�3 for SGMGT, for other three datasets

(Piano, Muse, Nott) we use a stepsize of 3e�3. For SGLD,

we use a stepsize of 1e � 3, for SGNHT the stepsize is set

as 5e� 5. The other hyperparameters are provided in 5

G. Additional figure for RNNs experiment
We provide the traceplot of one parameter in RNN experi-

ment of JSB dataset. We choose this parameter at random.

Generally, the SGMGT with a = 2 seems to demonstrate

more random walk behavior than SGMGT with a = 1

0 2000 4000
# of iterations

-3

-2

-1

0

1

Pa
ra

m
et

er
 v

al
ue

SGMGT (a=2)
SGMGT (a=1)
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SGMGT-D (a=2)

Figure 6. Traceplot for RNN experiments

H. Additional results for RNN experiments
Here we provide the results of several optimization meth-

ods, the results are taken from Chen et al. (2016).

Table 6. Test negative log-likelihood results on polyphonic music

datasets using RNN.

Algorithms Piano. Nott. Muse. JSB.

Adam 8.00 3.70 7.56 8.51

RMSprop 7.70 3.48 7.22 8.52

SGD-M 8.32 3.60 7.69 8.59

SGD 11.13 5.26 10.08 10.81

HF 7.66 3.89 7.19 8.58

SGD-M 8.37 4.46 8.13 8.71

I. Convergence property
Proof. This follows the proof for general SG-MCMC algo-

rithms. Specifically, in SGMGT, the generator of the cor-

responding SDE is defined as:

Lf(x) ,
✓
F (x) ·r+

1

2

�
⌃⌃

T

�
: rrT

◆
f(x) ,

where

x = (✓, p, ⇠),

F (x) =

0

@
��

✓

rU(✓) +rK
c

(p)
�r ˜U(✓)� (�

p

+ �rF (⇠))rK
c

(p)
�
⇥
(rK

c

(p))2 �r2K
c

(p)
⇤
� �

⇠

rF (⇠)

1

A ,

⌃ =

0

@

p
2�

✓

0 0

0

p
2�

p

0

0 0

p
2�

⇠

1

A .

After introducing stochastic gradients, in each iteration t,
the generator is perturbed by:

�V
t

=

⇣
r ˜U(✓)�rU(✓)

⌘
· (r� �

✓

r) ,

such that

˜L
t

= L + �V
t

, where

˜L
t

is the local generator

for the SDE in iterator t.

After defining these notation, we follows the proofs of The-

orem 2 and Theorem 3 in (Chen et al., 2015).

The proof for the bias: Following Theorem 2 in Chen

et al. (2015), in the decreasing step size setting, the split

flow can be written as:

E ( (X
lh

)) =

⇣
I+ h

l

˜L
l

⌘
 (X(l�1)h)

+

KX

k=2

hk

l

k!
˜L2
l

 (X(l�1)h) +O(hK+1
l

) .

Similarly, the expected difference between

˜� and

¯� can be
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simplified using the step size sequence (h
l

) as:

E
⇣
˜�� ¯�

⌘
(15)

=

1

S
L

(E ( (X
Lh

))�  (X0)) (16)

�
KX

k=2

LX

l=1

hk

l

k!S
L

˜Lk

l

 (X(l�1)h) +O(

P
L

l=1 h
K+1
l

S
L

) (17)

Similar to the derivation in Chen et al. (2015), we can de-

rive the following bounds k = (2, · · · ,K):

LX

l=1

hk

l

E ˜Lk

l

 (X(l�1)h) (18)

= O

 
LX

l=1

⇣
(hk�1

l

� hk�1
l�1 )

˜Lk�1
l

 (X(l�1)h) + hK+1
l

⌘!

= O

 
1 +

LX

l=1

hK+1
l

!
. (19)

Substitute (18) into (15) and collect low order terms, we

have:

E
⇣
˜�� ¯�

⌘
(20)

=

1

S
L

(E ( (X
Lh

))�  (X0)) +O(

P
L

l=1 h
K+1
l

S
L

) .

(21)

As a result, the bias can be expressed as:

���E˜�� ¯�
��� 

�����
1

S
L

(E [ (X
Lh

)]�  (X0)) +O(

P
L

l=1 h
K+1
l

S
L

)

�����

.
����
1

S
L

����+

�����

P
L

l=1 h
K+1
l

S
L

)

�����

=O

 
1

S
L

+

P
L

l=1 h
K+1
l

S
L

!
.

Taking L ! 1, both terms go to zero by assumption.

The proof for the MSE: Following similar derivations as

in Theorem 2 in Chen et al. (2015), we have that

LX

l=1

E ( (X
lh

)) =

LX

l=1

 (X(l�1)h) +

LX

l=1

h
l

L (X(l�1)h)

+

LX

l=1

h
l

�V
l

 (X(l�1)h)

+

KX

k=2

LX

l=1

hk

l

k!
˜Lk

l

 (X(l�1)h) + C
LX

l=1

hK+1
l

.

Substitute the Poisson equation into the above equation and

divided both sides by S
L

, we have

ˆ�� ¯� =

E (X
Lh

)�  (x0)

S
L

+

1

S
L

L�1X

l=1

�
E (X(l�1)h) +  (X(l�1)h)

�

+

LX

l=1

h
l

S
L

�V
l

 (X(l�1)h)

+

KX

k=2

LX

l=1

hk

l

k!S
L

˜Lk

l

 (X(l�1)h) + C

P
L

l=1 h
3
l

S
L

.

As a result, there exists some positive constant C, such that:

E
⇣
ˆ�� ¯�

⌘2
 CE

0

B@
1

S2
L

( (X0)� E (X
Lh

))

2

| {z }
A1

(22)

+

1

S2
L

LX

l=1

�
E (X(l�1)h)�  (X(l�1)h)

�2

| {z }
A2

+

LX

l=1

h2
l

S2
L

k�V
l

k2 +
KX

k=2

 
LX

l=1

hk

l

k!S
L

˜Lk

l

 (X(l�1)h)

!2

| {z }
A3

+

 P
L

l=1 h
3
l

S
L

!2
1

A
(23)

A1 can be bounded by assumptions, and A2 is shown

to be bounded by using the fact that E (X(l�1)h) �
 (X(l�1)h) = O(

p
h
l

) from Theorem 2 in Chen et al.

(2015). Furthermore, similar to the proof of Theorem 2

in Chen et al. (2015), the expectation of A3 can also

be bounded by using the formula E[X2
] = (EX)

2
+

E[(X�EX)

2
] and (18). It turns out that the resulting terms

have order higher than those from the other terms, thus can

be ignored in the expression below. After some simplifica-

tions, (22) is bounded by:

E
⇣
ˆ�� ¯�

⌘2
(24)

.
X

l

h2
l

S2
L

E k�V
l

k2 + 1

S
L

+

1

S2
L

+

 P
L

l=1 h
K+1
l

S
L

!2

= C

 
X

l

h2
l

S2
L

E k�V
l

k2 + 1

S
L

+

(

P
L

l=1 h
K+1
l

)

2

S2
L

!

(25)

for some C > 0, this completes the first part of the theorem.

We can see that according to the assumption, the last two
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terms in (24) approach to 0 when L ! 1. If we further

assume

P1
l=1 h

2
l

S

2
L

= 0, then the first term in (24) approaches

to 0 because:

X

l

h2
l

S2
L

E k�V
l

k2 
✓
sup

l

E k�V
l

k2
◆ P

l

h2
l

S2
L

! 0 .

As a result, we have lim

L!1 E
⇣
ˆ�� ¯�

⌘2
= 0.

J. Proof for Lemma 1
To prove Lemma 1, we first introduce the following lemma

from (Geyer, 2005).

Lemma 3 (Geyer (2005)). Suppose µ is a probability dis-
tribution and for each z in the domain of domain of µ there
is a Markov kernel P

z

satisfying ⇡ = ⇡P
z

, and suppose
that the map (z, x) ⇢ P

z

(x,A) is jointly measurable for
each A. Then

Q(x,A) =

Z
µ(dz)P

z

(x,A)

defines a kernel Q that is Markov and satisfies ⇡ = ⇡Q.

Proof. Detailed proof can be found in Chapter 3 of Geyer

(2005).

Now it is ready to prove Lemma 1.

Proof of Lemma 1. First, we note that the momentum (or

other auxiliary variables) is resampled from the stationary

distribution of the Itˆo diffusion. As a result, for each model

parameter ✓, it corresponds to a Markov kernel P
✓

with the

stationary Gaussian density. According to Lemma 3, the

composition of the numerical integrator in SGMGT and the

resampling forms a Markov kernel Q(✓, A), such that

⇡
h

= ⇡
h

Q .

The above equation means that ⇡
h

is also the stationary

distribution of the Markov kernel Q, which completes the

proof.

K. Proof for Lemma 2
Proof. First, the optimal bias and MSE bounds in Proposi-

tion 2 are given by:

Bias:

���Eˆ�
T

� ¯�
��� = O

⇣
T�1/2

⌘
,

MSE: E
⇣
ˆ�� ¯�

⌘2
= O

⇣
T�2/3

⌘
.

Let the number of samples in each resampling period to

be (T
l

)

L

l=1, and denote T , P
L

l=1 Tl

. Further denote the

sample average in the l-th resampling period to be:

ˆ�
Tl ,

1

T
l

TlX

l=1

�(x(Tl)
l

) ,

where {x(Tl)
l

} denotes samples in the l-th resampling pe-

riod. The final sample average is defined as:

ˆ�
T

,
LX

l=1

T
lP

Tl0
l

0=1

ˆ�
Tl .

As a result, the bias can be bounded as:

���Eˆ�
T

� ¯�
��� =

�����E
LX

l=1

T
lP

Tl0
l

0=1

ˆ�
Tl � ¯�

�����

=

1P
l

T
l

�����
X

l=1

T
l

⇣
Eˆ�

Tl � ¯�
⌘�����


X

l

T
lP

l

0 T
l

0

���Eˆ�
Tl � ¯�

���

=

X

l

T
lP
l

0
T
l

0O

✓
1

T
l

h
+ h

◆

=

X

l

1P
l

0
T
l

0O

✓
1

h
+ T

l

h

◆

Optimizing over h, we have

���Eˆ�
T

� ¯�
��� =

X

l

1P
l

0
T
l

0O
⇣
T 1/2
l

⌘

O

✓
(

P
l

T
l

)

1/2

P
l

T
l

◆
= O

⇣
T�1/2

⌘
,

which is the same as the optimal bias bound for SGMGT.

The proof for the optimal MSE bound follows similarly.

L. Stochastic slice sampling
In this section, we leverage the connection between slice

sampling and HMC (Zhang et al., 2016), to investigate the

approach to perform slice sampling with subset of data.

Slice sampling (Neal, 2003) augments the density p(✓)/C
(where C > 0 is a normalization constant) with slice vari-

ables u, such that the joint distribution p(✓, u) = 1/C, s.t.

0 < u < p(✓). To sample from the target distribution,

slice sampling is performed in a Gibbs sampling manner,

i.e., alternating between uniformly sampling the slice vari-

able (slice sampling step) u, and uniformly generating new
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samples ✓ (conditional sampling step), from a restricted do-

main such that the (unnormalized) density function values

for ✓ are less than the sampled slice variable u.

Slice sampling allows moves that can adaptively fit the

scale of the local density structure, thus yielding rapid mix-

ing. When the dataset is large, however, full-data density

evaluations can be very expensive. One recent attempt to

use subset data for slice sampling incorporates a hypothesis

test sub-procedure when performing the conditional sam-
pling step (DuBois et al., 2014). However, the rejection

rate could be large if the mini-batch size is small. Fur-

thermore, samples from the algorithm are biased due to the

hypothesis test step.

One straightforward approach to perform stochastic slice

sampling is by evaluating the likelihood on a subset of

data during the conditional sampling step when perform-

ing standard slice sampling. This approach, detailed in the

SM is referred as na¨ıve stochastic slice sampling (Na¨ıve

stochastic SS). As shown in Figure 7 in the SM, applying

this na¨ıve implementation to a Bayesian linear regression

problem would yield over-dispersed samples.

The reason why na¨ıve stochastic slice sampling fails can be

explained by following the logic of Zhang et al. (2016) and

Chen et al. (2014); Betancourt (2015). In (Zhang et al.,

2016), the authors demonstrate the connection between

slice sampling and Hamiltonian Monte Carlo, revealed by

Hamiltonian-Jacobi Equation. As a result, performing slice

sampling can be equivalently realized in an HMC formula-

tion.

We consider mapping na¨ıve stochastic slice sampling to its

equivalent HMC space parameterized by model parameter

✓ and momentum p as in (26) (where the monomial pa-

rameter a = 1, with notation from Zhang et al. (2016)).

This results in an HMC formulation that is equivalent to

the na¨ıve stochastic gradient HMC in Chen et al. (2014),

but with different kinetic function, as in (3) when a = 1.

Similar to (Chen et al., 2014), the entropy of the joint distri-

bution of (✓, p) would always increase due to the stochastic

noise, explaining the over-dispersion distribution that we

observe in Figure 7 in the SM.

Fortunately, one can leverage the connection between slice

sampling and HMC from Zhang et al. (2016) to perform an

improved stochastic slice sampling. This is done by adopt-

ing the SDE of SGHMC in (7) and substituting the Gaus-

sian kinetic with a softened Laplace kinetic (i.e. K
c

(p)
when a = 1) as in (11). A friction term ArK

c

(p) is incor-

porate to offset the stochastic noise, resulting in

d✓ = rK
c

(p)dt, (26)

dp = �[r ˜U(✓) +ArK
c

(p)]dt+
q
2(AI � ˆB(✓))dW .

The resulting stochastic Laplace HMC algorithm (detailed

in the SM) from (26) is (asymptotically) invariant to the

target distribution, and performs equivalently to a correct

stochastic slice sampling in one-dimensional cases, as c !
1. In Figure 7, the stochastic Laplace HMC sampler can

ameliorate the over-dispersion of sampled posterior distri-

bution than na¨ıve stochastic slice sampling.

M. Naive stochastic slice sampling and
Stochastic Laplacian HMC

The na¨ıve stochastic slice sampling can be described in Al-

gorithm 1

Algorithm 1 Na¨ıve stochastic SS.

Input: Initial parameter ✓0.

for t = 1, 2, . . . do
Sampling a mini-batch x̃

t

.

Evaluate stochastic negative log-density

˜U
x̃t(✓t�1) ,

exp[� log p(✓
t�1)� N

N

0

P
x

02x̃t
log p(x0|✓

t�1)].

Uniformly sample u
t

from (0, exp[� ˜U
x̃t(✓t�1)]).

Sample ✓
t

from {✓ :

˜U
x̃t(✓) < log(�u

t

)} using dou-

bling and shrinking (Neal, 2003).

end for

According to Zhang et al. (2016), Algorithm 1 has deep

connection to Algorithm 2 in HMC formulation, in univari-

ate scenarios.

Algorithm 2 Na¨ıve stochastic SS in HMC space.

Input: Initial parameter ✓0.

for t = 1, 2, . . . do
Sampling a mini-batch x̃

t

.

Sampling each momentum p independently (for each

✓ dimension) from a Laplacian distribution L(m),

where m > 0 is the mass parameter.

for s = 1, 2, . . . do
Evaluate stochastic gradient, r ˜U(✓), from (5) on

mini-batch x̃
t

.

Perform leap-frog updates using (4) by substituting

the rU(✓) with r ˜U(✓) and substituting rK(p)
with sign(p)/m.

end for
end for

By adding a friction term as in Chen et al. (2014) we

provide the corrected SG-MCMC Algorithm 2 that corre-

sponds to stochastic slice sampling.
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Figure 7. Na¨ıve stochastic slice sampling vs. Stochastic Laplacian

HMC

Algorithm 3 Stochastic Laplacian HMC

Input: Initial parameter ✓0.

for t = 1, 2, . . . do
Sampling a momentum p from a distribution /
exp(�K

c

(p)) with K
c

(p) defined in (11), where c is

the softened parameter.

for s = 1, 2, . . . do
Sampling a mini-batch x̃

t

.

Evaluating stochastic gradient r ˜U(✓) from (5) on

mini-batch x̃
t

.

Performing leap-frog updating using SDE in (26).

end for
end for

We provide the empirical density drawn by na¨ıve stochas-

tic slice sampling and stochastic Laplacian HMC on a syn-

thetic Bayesian linear regression problem with one feature

dimension. For each instance i, y
i

⇠ N (betax
i

, 1). We

estimate the posterior of the single parameter �. The syn-

thetic dataset has 100 training samples. We use a minibatch

size of 30 for each method, and collect 2,000 Monte Carlo

iterations. For stochastic Laplacian HMC we use a stepsize

of 0.1 the diffusion parameter A is set to be 7 and the soften

parameter is set to be 1. From 7, the stochastic Laplacian

HMC can better recover the target distribution.


