
1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Appendix for Stochastic Gradient Monomial Gamma Sampler

A. The Main Theorem
We provide the following theorem to characterize the sta-

tionary distribution of the stochastic process with SDEs in

(12).

Theorem 3. The stochastic process generated from SDEs
(12) converges to a stationary distribution p(�) /
exp(�H(�)), where H(�) is defined as in (9).

Proof. We first show that the Fokker-Planck equation holds

for the proposed SDE and probability density p(�),

r� · p(�)V (�) = r�rT

� : [p(�)D(�)]

Here the r , (@/@✓, @/@p, @/@⇠). · represents a vector

inner product and : denotes the matrix double dot product,

i.e., X : Y = Tr(XTY). In order to show FP equation

holds, we look at both side of the equation.

The left hand side can be written as

r� · p(�)V (�)

= [

@V (�)

@�
� @H(�)

@�
V (�)]p(�)

= {�
✓

[(rU(✓))2 �r2U(✓)]

+�
p

[(rK(p))2 �r2K(p)]

+�
⇠

[(rF (⇠))2 �r2F (⇠)]}p(�)

For the right hand side,

r�rT

� : [p(�)D(�)]

= �
✓

rrT

: p(�) + �
p

rrT

: p(�) + �
⇠

rrT

: p(�)

= {�
✓

[(rU(✓))2 �r2U(✓)]

+�
p

[(rK(p))2 �r2K(p)]

+�
⇠

[(rF (⇠))2 �r2F (⇠)]}p(�)

For stationary distribution,

@p(�, t)

@t
= 0

As a result, the equality in (13) holds. The stochastic pro-

cess defined by (12) is preserved by the dynamic. Alterna-

tively, one can leverage the recipe from (Ma et al., 2015) to

recover the same conclusion, by setting semi-definite ma-

trix D = Diag([�
✓

,�
p

,�
⇠

]) and skew-symmetric Q to be

0

@
0 �I 0

I 0 �rK(p)
0 ��rK(p) 0

1

A

Note that under the softened kinetics, the K
c

(p) is twice

differentiable, and rK
c

(p) is Lipschitz continuous. Thus

the Fokker-Planck equation holds, leading to a stationary

distribution invariant to target distribution. Another remark

is that the resampling process for p and ⇠ will still lead to

the same invariante distribution p(�), since the resampling

process is directly drawing sample from the marginal distri-

bution. Finally, it can be proved that the corresponding Itˆo

diffusion of our algorithm in (12) is non-reversible. This

speed up the convergence speed to equilibrium, because it

is known that a reversible process convergences slower than

its non-reversible counter part (Hwang et al., 2005).

B. Details for softened kinetics
We provide the details for the derivation of softened kinet-

ics. Note that in the SDE (12), only rK
c

(p) and r2K
c

(p)
is involved. For a = 1, we consider

K
c

(p) = �g(p) + 2/c log(1 + ecg(p)), (13)

g(p) = p/m.

which gives

rK
c

(p) = 1
m

 (g(p)),

r2K
c

(p) = 1
m

2 0
(g(p)).

Where, (x) =

e

cx�1
e

cx+1 is the hyperbolic tangent function

(tanh) with the softening parameter c, 0
(x) = 2ce

cx

(ecx+1)2 .

For a = 2, we consider

K
c

(p) = g(p) +
4

c(1 + ecg(p))
, (14)

g(p) = |p|1/2/m.

which gives

rK
c

(p) =

1
2m sign(p) (g(p))2|p|�1/2,

r2K
c

(p) =

1
2m2 (g(p)) 0

(g(p))|p|�1

� 1
4m

2
(g(p))|p|�3/2.

In general, for arbitrary a, we consider setting the

rK
c

(p) =
a

m
 (g(p))a|p|�1/a,

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

Stochastic Gradient Monomial Gamma Sampler

Such specification will yield a differentiable softened kinet-

ics function by computing the integral, which is tractable

for positive value of a. However, in practice, as suggested

by (Zhang et al., 2016) the optimal a would usually be-

tween [0.5, 2]. We would suggest consider using a = 1 or

a = 2 for general inference tasks.

C. Synthetic multi-well potential problem
The five-well potential is defined as:

U(✓) , e
3
4 ✓

2� 3
2

P10
i=1 ci sin(1

4⇡i(✓+4)
) ,

where c = (�0.47,�0.83,�0.71,�0.02, 0.24, 0.01, 0.27,
� 0.37, 0.87,�0.37) is a vector, c

i

is the i-th element of c.

D. Symmetric Splitting Integrators for
SGMGT

The first-ordered Euler integration results in high dis-

cretization error in Hamiltonian dynamic updating of

HMC. In (Chen et al., 2016), a symmetric splitting scheme

is leveraged to reduce the numerical error. We applied the

softened kinetics K
c

(p), and set F (⇠) as

(⇠��p)
2

2� . In this

symmetric splitting scheme, the Hamiltonian is split into

sub-componenents, and for each sub-componenents an in-

dividual SDE is applied on. The resulting discretization is

symplectic and second-ordered:

A : d� =

0

@
��

✓

r ˜U(✓) +rK
c

(p)
0

f(�)

1

A dt/2

B : d� =

0

@
0

�⇠ ·rK
c

(p)
0

1

A dt/2

O : d� =

0

@
0

�r ˜U(✓)
0

1

A dt+D(�)dW

Here we denote f(�) , �[(rK
c

(p))2 � (r2K
c

(p))] �
�⇠

�

(⇠ � �
p

) for clarity. The sub-SDE under sub-SDE B

is analytically solvable. Following (Chen et al., 2015),

for a 6= 1/2, the updating procedure follows an ABOBA

Table 4. Experimental setup for discriminative RBM

Algorithms �
p

�
✓

�
⇠

� c h

SGNHT 10 - - 1 - 2e-4

SGNHT-D 10 0.1 0.1 1 - 2e-4

SGMGT-D (a=1) 10 0.1 0.1 1 3 1e-5

SGMGT-D (a=2) 10 0.1 0.1 1 5 5e-5

scheme, given by

A : ✓
t+1/3 = ✓

t

+rK
c

(p)h/2, ⇠
t+1/3 = ⇠

t

+ f(�)h/2

B : p
t+1/3 = [p(2a�1)/a

t

� 2a� 1

a2
⇠
t+1/2h/2]

a/(2a�1)

O : ✓
t+2/3 = ✓

t+1/3 +
p
2�

✓

✏
✓

p
t+2/3 = p

t+1/3 �r ˜U(✓))h/2 +
p

2�
p

✏
p

,

⇠
t+2/3 = ⇠

t+1/3 +
p
2�

⇠

✏
⇠

B : p
t+1 = [p(2a�1)/a

t+2/3 � 2a� 1

a2
⇠
t+2/3h/2]

a/(2a�1)

A : ✓
t+1 = ✓

t+2/3 +rK
c

(p)h/2, ⇠
t+1 = ⇠

t+2/3 + f(�)h/2

When a = 1/2, it follows the splitting scheme with stan-

dard SGNHT (Chen et al., 2015).

E. Experimental setups for DRBM
The hyper-parameter setups for the DRBM experiments are

provided as below. We select the hyperparameters based

on the performance on validation dataset. The algorithm

will be early stopped if the validation error start to increase.

The selection is based on a grid search. For �
p

, �
⇠

and �
✓

we select from {0.001, 0.01, 0.1, 1, 10}. For the softening

parameter c we select from {3, 5, 8}. We fixed the m = 1

and � = 1. The stepsize is chosen from {1e � 5, 2e �
5, 5e� 5, 1e� 4, 2e� 4, 5e� 4}. The T

p

and T
⇠

are set as

100 and 100, respectively.

For SGLD, we use a stepsize of 1e� 5

F. Experimental setups for RNNs
The hyper-parameter setups for the RNNs experiments are

similar to the DRBM experiments. For �
p

, �
⇠

and �
✓

we

select from {0.01, 0.1, 1, 10}. For the softening parameter

c we select from {3, 5, 8}. We fixed the m = 1 and � = 1.

The stepsize of SGMGT-D/SGMGT is chosen from {1e�
3, 1.5e � 3, 2e � 3, 2.5e � 3, 3e � 3}. The T

p

and T
⇠

are

set as 100 and 100, respectively. We also incorporate a

decay scheme for stepsize, i.e. the stepsize is divided by

a decaying factor ↵ = 1.1 for each scan of dataset (i.e.
each epoch). The gradient estimated on a subset of data is

clipped to have a maximum value of 5 as in (Chen et al.,

2016) for each dimension to prevent updates from a large

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

Stochastic Gradient Monomial Gamma Sampler

Table 5. Experimental setup for discriminative RNNs

Algorithms m �
p

�
✓

�
⇠

� c

SGNHT 1 10 - - 1 -

SGNHT-D 1 10 0.01 0.01 1 -

SGMGT/SGMGT-D (a=1) 1 10 0.1 0.01 1 5

SGMGT/SGMGT-D (a=2) 1 10 0.1 0.01 1 3

gradient value to blow up the objective loss. For JSB we

use a stepsize of 2e�3 for SGMGT, for other three datasets

(Piano, Muse, Nott) we use a stepsize of 3e�3. For SGLD,

we use a stepsize of 1e � 3, for SGNHT the stepsize is set

as 5e� 5. The other hyperparameters are provided in 5

G. Additional figure for RNNs experiment
We provide the traceplot of one parameter in RNN experi-

ment of JSB dataset. We choose this parameter at random.

Generally, the SGMGT with a = 2 seems to demonstrate

more random walk behavior than SGMGT with a = 1

0 2000 4000
of iterations

-3

-2

-1

0

1

Pa
ra

m
et

er
 v

al
ue

SGMGT (a=2)
SGMGT (a=1)
SGMGT-D (a=2)
SGMGT-D (a=2)

Figure 6. Traceplot for RNN experiments

H. Additional results for RNN experiments
Here we provide the results of several optimization meth-

ods, the results are taken from Chen et al. (2016).

Table 6. Test negative log-likelihood results on polyphonic music

datasets using RNN.

Algorithms Piano. Nott. Muse. JSB.

Adam 8.00 3.70 7.56 8.51

RMSprop 7.70 3.48 7.22 8.52

SGD-M 8.32 3.60 7.69 8.59

SGD 11.13 5.26 10.08 10.81

HF 7.66 3.89 7.19 8.58

SGD-M 8.37 4.46 8.13 8.71

I. Convergence property
Proof. This follows the proof for general SG-MCMC algo-

rithms. Specifically, in SGMGT, the generator of the cor-

responding SDE is defined as:

Lf(x) ,
✓
F (x) ·r+

1

2

�
⌃⌃

T

�
: rrT

◆
f(x) ,

where

x = (✓, p, ⇠),

F (x) =

0

@
��

✓

rU(✓) +rK
c

(p)
�r ˜U(✓)� (�

p

+ �rF (⇠))rK
c

(p)
�
⇥
(rK

c

(p))2 �r2K
c

(p)
⇤
� �

⇠

rF (⇠)

1

A ,

⌃ =

0

@

p
2�

✓

0 0

0

p
2�

p

0

0 0

p
2�

⇠

1

A .

After introducing stochastic gradients, in each iteration t,
the generator is perturbed by:

�V
t

=

⇣
r ˜U(✓)�rU(✓)

⌘
· (r� �

✓

r) ,

such that

˜L
t

= L + �V
t

, where

˜L
t

is the local generator

for the SDE in iterator t.

After defining these notation, we follows the proofs of The-

orem 2 and Theorem 3 in (Chen et al., 2015).

The proof for the bias: Following Theorem 2 in Chen

et al. (2015), in the decreasing step size setting, the split

flow can be written as:

E ((X
lh

)) =

⇣
I+ h

l

˜L
l

⌘
 (X(l�1)h)

+

KX

k=2

hk

l

k!
˜L2
l

 (X(l�1)h) +O(hK+1
l

) .

Similarly, the expected difference between

˜� and

¯� can be

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

Stochastic Gradient Monomial Gamma Sampler

simplified using the step size sequence (h
l

) as:

E
⇣
˜�� ¯�

⌘
(15)

=

1

S
L

(E ((X
Lh

))� (X0)) (16)

�
KX

k=2

LX

l=1

hk

l

k!S
L

˜Lk

l

 (X(l�1)h) +O(

P
L

l=1 h
K+1
l

S
L

) (17)

Similar to the derivation in Chen et al. (2015), we can de-

rive the following bounds k = (2, · · · ,K):

LX

l=1

hk

l

E ˜Lk

l

 (X(l�1)h) (18)

= O

LX

l=1

⇣
(hk�1

l

� hk�1
l�1)

˜Lk�1
l

 (X(l�1)h) + hK+1
l

⌘!

= O

1 +

LX

l=1

hK+1
l

!
. (19)

Substitute (18) into (15) and collect low order terms, we

have:

E
⇣
˜�� ¯�

⌘
(20)

=

1

S
L

(E ((X
Lh

))� (X0)) +O(

P
L

l=1 h
K+1
l

S
L

) .

(21)

As a result, the bias can be expressed as:

���E˜�� ¯�
��� 

�����
1

S
L

(E [(X
Lh

)]� (X0)) +O(

P
L

l=1 h
K+1
l

S
L

)

�����

.
����
1

S
L

����+

�����

P
L

l=1 h
K+1
l

S
L

)

�����

=O

1

S
L

+

P
L

l=1 h
K+1
l

S
L

!
.

Taking L ! 1, both terms go to zero by assumption.

The proof for the MSE: Following similar derivations as

in Theorem 2 in Chen et al. (2015), we have that

LX

l=1

E ((X
lh

)) =

LX

l=1

 (X(l�1)h) +

LX

l=1

h
l

L (X(l�1)h)

+

LX

l=1

h
l

�V
l

 (X(l�1)h)

+

KX

k=2

LX

l=1

hk

l

k!
˜Lk

l

 (X(l�1)h) + C
LX

l=1

hK+1
l

.

Substitute the Poisson equation into the above equation and

divided both sides by S
L

, we have

ˆ�� ¯� =

E (X
Lh

)� (x0)

S
L

+

1

S
L

L�1X

l=1

�
E (X(l�1)h) + (X(l�1)h)

�

+

LX

l=1

h
l

S
L

�V
l

 (X(l�1)h)

+

KX

k=2

LX

l=1

hk

l

k!S
L

˜Lk

l

 (X(l�1)h) + C

P
L

l=1 h
3
l

S
L

.

As a result, there exists some positive constant C, such that:

E
⇣
ˆ�� ¯�

⌘2
 CE

0

B@
1

S2
L

((X0)� E (X
Lh

))

2

| {z }
A1

(22)

+

1

S2
L

LX

l=1

�
E (X(l�1)h)� (X(l�1)h)

�2

| {z }
A2

+

LX

l=1

h2
l

S2
L

k�V
l

k2 +
KX

k=2

LX

l=1

hk

l

k!S
L

˜Lk

l

 (X(l�1)h)

!2

| {z }
A3

+

 P
L

l=1 h
3
l

S
L

!2
1

A
(23)

A1 can be bounded by assumptions, and A2 is shown

to be bounded by using the fact that E (X(l�1)h) �
 (X(l�1)h) = O(

p
h
l

) from Theorem 2 in Chen et al.

(2015). Furthermore, similar to the proof of Theorem 2

in Chen et al. (2015), the expectation of A3 can also

be bounded by using the formula E[X2
] = (EX)

2
+

E[(X�EX)

2
] and (18). It turns out that the resulting terms

have order higher than those from the other terms, thus can

be ignored in the expression below. After some simplifica-

tions, (22) is bounded by:

E
⇣
ˆ�� ¯�

⌘2
(24)

.
X

l

h2
l

S2
L

E k�V
l

k2 + 1

S
L

+

1

S2
L

+

 P
L

l=1 h
K+1
l

S
L

!2

= C

X

l

h2
l

S2
L

E k�V
l

k2 + 1

S
L

+

(

P
L

l=1 h
K+1
l

)

2

S2
L

!

(25)

for some C > 0, this completes the first part of the theorem.

We can see that according to the assumption, the last two

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

Stochastic Gradient Monomial Gamma Sampler

terms in (24) approach to 0 when L ! 1. If we further

assume

P1
l=1 h

2
l

S

2
L

= 0, then the first term in (24) approaches

to 0 because:

X

l

h2
l

S2
L

E k�V
l

k2 
✓
sup

l

E k�V
l

k2
◆ P

l

h2
l

S2
L

! 0 .

As a result, we have lim

L!1 E
⇣
ˆ�� ¯�

⌘2
= 0.

J. Proof for Lemma 1
To prove Lemma 1, we first introduce the following lemma

from (Geyer, 2005).

Lemma 3 (Geyer (2005)). Suppose µ is a probability dis-
tribution and for each z in the domain of domain of µ there
is a Markov kernel P

z

satisfying ⇡ = ⇡P
z

, and suppose
that the map (z, x) ⇢ P

z

(x,A) is jointly measurable for
each A. Then

Q(x,A) =

Z
µ(dz)P

z

(x,A)

defines a kernel Q that is Markov and satisfies ⇡ = ⇡Q.

Proof. Detailed proof can be found in Chapter 3 of Geyer

(2005).

Now it is ready to prove Lemma 1.

Proof of Lemma 1. First, we note that the momentum (or

other auxiliary variables) is resampled from the stationary

distribution of the Itˆo diffusion. As a result, for each model

parameter ✓, it corresponds to a Markov kernel P
✓

with the

stationary Gaussian density. According to Lemma 3, the

composition of the numerical integrator in SGMGT and the

resampling forms a Markov kernel Q(✓, A), such that

⇡
h

= ⇡
h

Q .

The above equation means that ⇡
h

is also the stationary

distribution of the Markov kernel Q, which completes the

proof.

K. Proof for Lemma 2
Proof. First, the optimal bias and MSE bounds in Proposi-

tion 2 are given by:

Bias:

���Eˆ�
T

� ¯�
��� = O

⇣
T�1/2

⌘
,

MSE: E
⇣
ˆ�� ¯�

⌘2
= O

⇣
T�2/3

⌘
.

Let the number of samples in each resampling period to

be (T
l

)

L

l=1, and denote T , P
L

l=1 Tl

. Further denote the

sample average in the l-th resampling period to be:

ˆ�
Tl ,

1

T
l

TlX

l=1

�(x(Tl)
l

) ,

where {x(Tl)
l

} denotes samples in the l-th resampling pe-

riod. The final sample average is defined as:

ˆ�
T

,
LX

l=1

T
lP

Tl0
l

0=1

ˆ�
Tl .

As a result, the bias can be bounded as:

���Eˆ�
T

� ¯�
��� =

�����E
LX

l=1

T
lP

Tl0
l

0=1

ˆ�
Tl � ¯�

�����

=

1P
l

T
l

�����
X

l=1

T
l

⇣
Eˆ�

Tl � ¯�
⌘�����


X

l

T
lP

l

0 T
l

0

���Eˆ�
Tl � ¯�

���

=

X

l

T
lP
l

0
T
l

0O

✓
1

T
l

h
+ h

◆

=

X

l

1P
l

0
T
l

0O

✓
1

h
+ T

l

h

◆

Optimizing over h, we have

���Eˆ�
T

� ¯�
��� =

X

l

1P
l

0
T
l

0O
⇣
T 1/2
l

⌘

O

✓
(

P
l

T
l

)

1/2

P
l

T
l

◆
= O

⇣
T�1/2

⌘
,

which is the same as the optimal bias bound for SGMGT.

The proof for the optimal MSE bound follows similarly.

L. Stochastic slice sampling
In this section, we leverage the connection between slice

sampling and HMC (Zhang et al., 2016), to investigate the

approach to perform slice sampling with subset of data.

Slice sampling (Neal, 2003) augments the density p(✓)/C
(where C > 0 is a normalization constant) with slice vari-

ables u, such that the joint distribution p(✓, u) = 1/C, s.t.

0 < u < p(✓). To sample from the target distribution,

slice sampling is performed in a Gibbs sampling manner,

i.e., alternating between uniformly sampling the slice vari-

able (slice sampling step) u, and uniformly generating new

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

Stochastic Gradient Monomial Gamma Sampler

samples ✓ (conditional sampling step), from a restricted do-

main such that the (unnormalized) density function values

for ✓ are less than the sampled slice variable u.

Slice sampling allows moves that can adaptively fit the

scale of the local density structure, thus yielding rapid mix-

ing. When the dataset is large, however, full-data density

evaluations can be very expensive. One recent attempt to

use subset data for slice sampling incorporates a hypothesis

test sub-procedure when performing the conditional sam-
pling step (DuBois et al., 2014). However, the rejection

rate could be large if the mini-batch size is small. Fur-

thermore, samples from the algorithm are biased due to the

hypothesis test step.

One straightforward approach to perform stochastic slice

sampling is by evaluating the likelihood on a subset of

data during the conditional sampling step when perform-

ing standard slice sampling. This approach, detailed in the

SM is referred as na¨ıve stochastic slice sampling (Na¨ıve

stochastic SS). As shown in Figure 7 in the SM, applying

this na¨ıve implementation to a Bayesian linear regression

problem would yield over-dispersed samples.

The reason why na¨ıve stochastic slice sampling fails can be

explained by following the logic of Zhang et al. (2016) and

Chen et al. (2014); Betancourt (2015). In (Zhang et al.,

2016), the authors demonstrate the connection between

slice sampling and Hamiltonian Monte Carlo, revealed by

Hamiltonian-Jacobi Equation. As a result, performing slice

sampling can be equivalently realized in an HMC formula-

tion.

We consider mapping na¨ıve stochastic slice sampling to its

equivalent HMC space parameterized by model parameter

✓ and momentum p as in (26) (where the monomial pa-

rameter a = 1, with notation from Zhang et al. (2016)).

This results in an HMC formulation that is equivalent to

the na¨ıve stochastic gradient HMC in Chen et al. (2014),

but with different kinetic function, as in (3) when a = 1.

Similar to (Chen et al., 2014), the entropy of the joint distri-

bution of (✓, p) would always increase due to the stochastic

noise, explaining the over-dispersion distribution that we

observe in Figure 7 in the SM.

Fortunately, one can leverage the connection between slice

sampling and HMC from Zhang et al. (2016) to perform an

improved stochastic slice sampling. This is done by adopt-

ing the SDE of SGHMC in (7) and substituting the Gaus-

sian kinetic with a softened Laplace kinetic (i.e. K
c

(p)
when a = 1) as in (11). A friction term ArK

c

(p) is incor-

porate to offset the stochastic noise, resulting in

d✓ = rK
c

(p)dt, (26)

dp = �[r ˜U(✓) +ArK
c

(p)]dt+
q
2(AI � ˆB(✓))dW .

The resulting stochastic Laplace HMC algorithm (detailed

in the SM) from (26) is (asymptotically) invariant to the

target distribution, and performs equivalently to a correct

stochastic slice sampling in one-dimensional cases, as c !
1. In Figure 7, the stochastic Laplace HMC sampler can

ameliorate the over-dispersion of sampled posterior distri-

bution than na¨ıve stochastic slice sampling.

M. Naive stochastic slice sampling and
Stochastic Laplacian HMC

The na¨ıve stochastic slice sampling can be described in Al-

gorithm 1

Algorithm 1 Na¨ıve stochastic SS.

Input: Initial parameter ✓0.

for t = 1, 2, . . . do
Sampling a mini-batch x̃

t

.

Evaluate stochastic negative log-density

˜U
x̃t(✓t�1) ,

exp[� log p(✓
t�1)� N

N

0

P
x

02x̃t
log p(x0|✓

t�1)].

Uniformly sample u
t

from (0, exp[� ˜U
x̃t(✓t�1)]).

Sample ✓
t

from {✓ :

˜U
x̃t(✓) < log(�u

t

)} using dou-

bling and shrinking (Neal, 2003).

end for

According to Zhang et al. (2016), Algorithm 1 has deep

connection to Algorithm 2 in HMC formulation, in univari-

ate scenarios.

Algorithm 2 Na¨ıve stochastic SS in HMC space.

Input: Initial parameter ✓0.

for t = 1, 2, . . . do
Sampling a mini-batch x̃

t

.

Sampling each momentum p independently (for each

✓ dimension) from a Laplacian distribution L(m),

where m > 0 is the mass parameter.

for s = 1, 2, . . . do
Evaluate stochastic gradient, r ˜U(✓), from (5) on

mini-batch x̃
t

.

Perform leap-frog updates using (4) by substituting

the rU(✓) with r ˜U(✓) and substituting rK(p)
with sign(p)/m.

end for
end for

By adding a friction term as in Chen et al. (2014) we

provide the corrected SG-MCMC Algorithm 2 that corre-

sponds to stochastic slice sampling.

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

Stochastic Gradient Monomial Gamma Sampler

-2 -1 0 1 2
3

Pr
ob

ab
lity

 d
en

sit
y

Stochastic Laplace HMC
Naive stochastic SS
Oracle density

Figure 7. Na¨ıve stochastic slice sampling vs. Stochastic Laplacian

HMC

Algorithm 3 Stochastic Laplacian HMC

Input: Initial parameter ✓0.

for t = 1, 2, . . . do
Sampling a momentum p from a distribution /
exp(�K

c

(p)) with K
c

(p) defined in (11), where c is

the softened parameter.

for s = 1, 2, . . . do
Sampling a mini-batch x̃

t

.

Evaluating stochastic gradient r ˜U(✓) from (5) on

mini-batch x̃
t

.

Performing leap-frog updating using SDE in (26).

end for
end for

We provide the empirical density drawn by na¨ıve stochas-

tic slice sampling and stochastic Laplacian HMC on a syn-

thetic Bayesian linear regression problem with one feature

dimension. For each instance i, y
i

⇠ N (betax
i

, 1). We

estimate the posterior of the single parameter �. The syn-

thetic dataset has 100 training samples. We use a minibatch

size of 30 for each method, and collect 2,000 Monte Carlo

iterations. For stochastic Laplacian HMC we use a stepsize

of 0.1 the diffusion parameter A is set to be 7 and the soften

parameter is set to be 1. From 7, the stochastic Laplacian

HMC can better recover the target distribution.

