Appendix for Stochastic Gradient Monomial Gamma Sampler

A. The Main Theorem

We provide the following theorem to characterize the sta-
tionary distribution of the stochastic process with SDEs in
(12).

Theorem 3. The stochastic process generated from SDEs
(12) converges to a stationary distribution p(I')
exp(—H(T")), where H(T') is defined as in (9).

Proof. We first show that the Fokker-Planck equation holds
for the proposed SDE and probability density p(I"),

Vr - p(D)V(L) = Ve Vi : [p(0)D(T)]

Here the V £ (9/00,0/0p,0/0€). - represents a vector
inner product and : denotes the matrix double dot product,
ie, X 1Y = Tr(XTY). In order to show FP equation
holds, we look at both side of the equation.

The left hand side can be written as

Vr - p(I)V ()
= (D Ay ey
= {oo[(VU(0))* — V?U(0)]
+0,[(VK(p))® — V2K (p)]
+oe[(VF(€))? — V2F(€)]}p(T)
For the right hand side,
VrVL : [p(T)D(T)]
= ogVVT i p(T) +0,VVT : p(I) + 0. VVT : p(T)
= {oo[(VU(09))* — V*U(0)]
+0,[(VEK(p))* — V?K(p)]

— VZF(E)}p(I)

For stationary distribution,

op(T', 1)
ot

As a result, the equality in (13) holds. The stochastic pro-
cess defined by (12) is preserved by the dynamic. Alterna-
tively, one can leverage the recipe from (Ma et al., 2015) to
recover the same conclusion, by setting semi-definite ma-
trix D = Diag([og, 0, 0¢]) and skew-symmetric Q) to be

+o¢[(VF(€))?

=0

0 —I 0
I 0 YVE(p)
0 —yVK(p) 0

Note that under the softened kinetics, the K.(p) is twice
differentiable, and VK. (p) is Lipschitz continuous. Thus
the Fokker-Planck equation holds, leading to a stationary
distribution invariant to target distribution. Another remark
is that the resampling process for p and & will still lead to
the same invariante distribution p(T"), since the resampling
process is directly drawing sample from the marginal distri-
bution. Finally, it can be proved that the corresponding It6
diffusion of our algorithm in (12) is non-reversible. This
speed up the convergence speed to equilibrium, because it
is known that a reversible process convergences slower than
its non-reversible counter part (Hwang et al., 2005). O

B. Details for softened kinetics

We provide the details for the derivation of softened kinet-
ics. Note that in the SDE (12), only VK, (p) and V2K (p)
is involved. For a = 1, we consider

K.(p) = —g(p) +2/clog(1 + @), (13)
g(p) = p/m.

which gives

VK:(p) = ,
V2K.(p) = =1/ (9(p))-

Where, ¢(x) = ecx—ll is the hyperbolic tangent function
: 2
(tanh) with the softening parameter c, ¢’ () = ﬁ
For a = 2, we consider
Ke(p) = g(p) + (14)

C(l + ng(p)) ’
9(p) = |p|*/?/m.

which gives

VK.(p)
VQKC (p)

= s-sign(p)v(g(p))?[p|~*/2,
= gmz%/f( ()Y (9(p))lpl ="
2(g(p))lpl =3/,

In general, for arbitrary a, we consider setting the

VE(p) = —u(g(p)lpl e,
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Such specification will yield a differentiable softened kinet-
ics function by computing the integral, which is tractable
for positive value of a. However, in practice, as suggested
by (Zhang et al., 2016) the optimal a would usually be-
tween [0.5, 2]. We would suggest consider using a = 1 or
a = 2 for general inference tasks.

C. Synthetic multi-well potential problem

The five-well potential is defined as:

U(@) A 6%92_% S sin(%wi(9+4)) ,

where ¢ = (—0.47, —0.83,—0.71, —0.02,0.24,0.01, 0.27,
—0.37,0.87, —0.37) is a vector, ¢; is the i-th element of c.

D. Symmetric Splitting Integrators for
SGMGT

The first-ordered Euler integration results in high dis-
cretization error in Hamiltonian dynamic updating of
HMC. In (Chen et al., 2016), a symmetric splitting scheme
is leveraged to reduce the numerical error. We applied the

softened kinetics K.(p), and set F'(§) as % In this
symmetric splitting scheme, the Hamiltonian is split into
sub-componenents, and for each sub-componenents an in-
dividual SDE is applied on. The resulting discretization is
symplectic and second-ordered:

A:dlD = 0 dt/2
f(I)
0
B:dl = | —¢-VK.(p) |dt/2
0
0
O:dl' = —vU(8) |dt+ DT)dw
0

Here we denote f(I') = ~[(VK.(p))? — (V2K.(p))] —
%(f — o) for clarity. The sub-SDE under sub-SDE B
is analytically solvable. Following (Chen et al., 2015),
for a # 1/2, the updating procedure follows an ABOBA

Table 4. Experimental setup for discriminative RBM

Algorithms op 0§ O¢ 7Y C h
SGNHT 10 - - 1 - 2e4
SGNHT-D 10 01 01 1 - 2e4
SGMGT-D (a=1) 10 0.1 01 1 3 le-5
SGMGT-D (a=2) 10 0.1 01 1 5 5e-5

scheme, given by

A Oiy1y3 =00+ VEc(p)h/2,& 1173 =& + f(T)h/2

a—1)/a 2a—1 o/ (2a—
Bipt+1/3=[p§2 /e 2 €er1/2h/2]%/ oD

O: 0t+2/3 = 0t+1/3 + v 20’969
pt+2/3 = pt+l/3 - VU(G))h/? + 4/ 20'p€p,

§t42/3 = &iq1/3 T \/20¢€e

20—-1)/a 2a—1 3
B:pr = [p§+2/§)/ - 75t+2/3h/2]a/(2a D

A 01 =0 19/3 + VEc(p)h/2,6e41 = Epayz + f(T)A/2

When a = 1/2, it follows the splitting scheme with stan-
dard SGNHT (Chen et al., 2015).

E. Experimental setups for DRBM

The hyper-parameter setups for the DRBM experiments are
provided as below. We select the hyperparameters based
on the performance on validation dataset. The algorithm
will be early stopped if the validation error start to increase.
The selection is based on a grid search. For 0, 0¢ and oy
we select from {0.001,0.01,0.1,1,10}. For the softening
parameter ¢ we select from {3,5,8}. We fixed the m = 1
and v = 1. The stepsize is chosen from {le — 5,2e —
5,5e —b,1le — 4,2e — 4,5e — 4}. The T, and T are set as
100 and 100, respectively.

For SGLD, we use a stepsize of le — 5

F. Experimental setups for RNNs

The hyper-parameter setups for the RNNs experiments are
similar to the DRBM experiments. For 0, o¢ and oy we
select from {0.01,0.1,1,10}. For the softening parameter
¢ we select from {3, 5,8}. We fixed the m = 1 and y = 1.
The stepsize of SGMGT-D/SGMGT is chosen from {le —
3,1.5e — 3,2e — 3,2.5¢ — 3,3e — 3}. The T}, and T¢ are
set as 100 and 100, respectively. We also incorporate a
decay scheme for stepsize, i.e. the stepsize is divided by
a decaying factor « = 1.1 for each scan of dataset (i.e.
each epoch). The gradient estimated on a subset of data is
clipped to have a maximum value of 5 as in (Chen et al.,
2016) for each dimension to prevent updates from a large
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Table 5. Experimental setup for discriminative RNNs

Table 6. Test negative log-likelihood results on polyphonic music

Algorithms m o, 0O o¢ 7y c datasets using RNN.
SGNHT 1 10 - - 1 - Algorithms Piano. Nott. Muse. JSB.
SGNHT-D 1 10 001 001 1 - Adam 8.00 370 7.56 8.51
SGMGT/SGMGT-D(a=1) 1 10 0.1 001 1 5 RMSprop 7.70 3.48 7.22 8.52
SGMGT/SGMGT-D(a=2) 1 10 0.1 001 1 3 SGD-M 8.32 3.60 7.69 8.59
SGD 11.13 526 10.08 10.81
HF 7.66 3.89 7.19 8.58
SGD-M 8.37 4.46 8.13 8.71

gradient value to blow up the objective loss. For JSB we
use a stepsize of 2e — 3 for SGMGT, for other three datasets
(Piano, Muse, Nott) we use a stepsize of 3e — 3. For SGLD,
we use a stepsize of le — 3, for SGNHT the stepsize is set
as be — 5. The other hyperparameters are provided in 5

G. Additional figure for RNNs experiment

We provide the traceplot of one parameter in RNN experi-
ment of JSB dataset. We choose this parameter at random.
Generally, the SGMGT with ¢ = 2 seems to demonstrate
more random walk behavior than SGMGT with a = 1
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Figure 6. Traceplot for RNN experiments

H. Additional results for RNN experiments

Here we provide the results of several optimization meth-
ods, the results are taken from Chen et al. (2016).

I. Convergence property

Proof. This follows the proof for general SG-MCMC algo-
rithms. Specifically, in SGMGT, the generator of the cor-
responding SDE is defined as:

Lf() 2 (F(x) V() va) f(2) |
where
z = (0,p,%),
_ —opVU(0) + VK.(p)
F(x) = =VU(0) — (op +YVF(§))VK.(p) ;
v [(VEe(p))? = V2Kc(p)] — 0eVF(§)
V209 0 0
s=|( 0 2o, o0
o ol

After introducing stochastic gradients, in each iteration ¢,
the generator is perturbed by:

AV, = (vﬁ(o) - VU(o)) (V — gV,

such that ljt = L + AV,, where £~t is the local generator
for the SDE in iterator t.

After defining these notation, we follows the proofs of The-
orem 2 and Theorem 3 in (Chen et al., 2015).

The proof for the bias: Following Theorem 2 in Chen
et al. (2015), in the decreasing step size setting, the split
flow can be written as:

E (X)) = (T+ hle) ¥(Xa-1yn)

K hk ~
+ > L L (X o) + O(h)
k=2

k!

Similarly, the expected difference between q~5 and ¢ can be
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simplified using the step size sequence (h;) as: Substitute the Poisson equation into the above equation and
divided both sides by S, we have
E(6-0) 15
X 0o (1 b — 5= BV Xen) — ¥(0)
257 (B ((X1n)) = ¥(Xo)) (16) L
[ + (Ep(X—1yn) + ¥(Xa-1)n))
1 h (1-1)h (I-1)h
- ZZ S ‘Cl (X a—1yn) + O(Zl_}g L—) a7 =1
k=2 1=1 L

AVip(X-1yn)
Similar to the derivation in Chen et al. (2015), we can de-
rive the following bounds k = (2,--- , K):

ﬁMx i Mh &=
D“

?
L L

h3
Z El P(X 1) + CZTZ .

L
> hELFY(Xg-1yn) (18)

=1 As aresult, there exists some positive constant C', such that:

L
~o (z (07! DB k) )

N2 1 )
E(6-0) <CE| g @Xo)—Ev(Xsn)® (22)
L

L A
:O(l—f—th(“) : (19) L
=1 Z Ep(X-1)n 1P(X(Z—l)h))z

Substitute (18) into (15) and collect low order terms, we

have: Ay

- L p2 K L 2
E(¢_¢) (20) +Z‘9712 ||AV1H2+Z <Z ﬁﬂﬁ X 1)h)>

1 ZL pE+1 =1 "L k=2 \i=1
=3 (E((Xrn)) — ¥(Xo)) + O(l:klgil) . Ag

L L ,

(21) Zl 1
(5

As a result, the bias can be expressed as:

A; can be bounded by assumptions, and As is shown

L K+1 ]
‘]Eé— (;3’ < 2+ (E [ (Xrn)] — (Xo)) +O(Zl:17hl) to be bounded by using the fact that Ey)(X_qy5) —
St St ¥(Xq-1)n) = O(VIy) from Theorem 2 in Chen et al.
Z hK+1 (2015). Furthermore, similar to the proof of Theorem 2
5‘ 5 + l;,i) in Chen et al. (2015), the expectation of A3 can also
L L be bounded by using the formula E[X?] = (EX)? +

Zz i E[(X —E X)?] and (18). It turns out that the resulting terms
=0 SL T . have order higher than those from the other terms, thus can
be ignored in the expression below. After some simplifica-

Taking L — oo, both terms go to zero by assumption. tions, (22) is bounded by:

The proof for the MSE: Following similar derivations as E ( é— 5)2 (24)
in Theorem 2 in Chen et al. (2015), we have that
h? 1 S b
2 ~Z GEIAVIIP + 5+ 2+<“
> E (X)) Z V(X g—1yn) + Z hL(X 1)) 5o S St
=1 K+1y\2
(i b2
L =Cc(> ;]E||AV|| +—+“—2
+) I AVIH(X o) ( 51 51
=1 25)

+ Z Z E Fp(X—1yn) + C Z REFL for some C' > 0, this completes the first part of the theorem.
P We can see that according to the assumption, the last two
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terms in (24) approach to 0 when L — oo. If we further
[eS] 2
assume % = 0, then the first term in (24) approaches
L
to 0 because:

h2
Z l JEIIAVII

—0.

h2
(s i) 21

N2
As aresult, we have limy_, o E (qb — (;S) =0.

J. Proof for Lemma 1

To prove Lemma 1, we first introduce the following lemma
from (Geyer, 2005).

Lemma 3 (Geyer (2005)). Suppose p is a probability dis-
tribution and for each z in the domain of domain of u there
is a Markov kernel P, satisfying @ = wP,, and suppose
that the map (z,xz) — P,(x, A) is jointly measurable for
each A. Then

Q. 4) = [ ud2)P (o, 4)
defines a kernel Q that is Markov and satisfies 1 = Q).

Proof. Detailed proof can be found in Chapter 3 of Geyer
(2005). O

Now it is ready to prove Lemma 1.

Proof of Lemma 1. First, we note that the momentum (or
other auxiliary variables) is resampled from the stationary
distribution of the It diffusion. As a result, for each model
parameter 6, it corresponds to a Markov kernel Py with the
stationary Gaussian density. According to Lemma 3, the
composition of the numerical integrator in SGMGT and the
resampling forms a Markov kernel Q(6, A), such that

Th = T hQ .
The above equation means that 7, is also the stationary

distribution of the Markov kernel @), which completes the
proof. O

K. Proof for Lemma 2

Proof. First, the optimal bias and MSE bounds in Proposi-

tion 2 are given by:
Bias: ‘EQAST — (;_5‘ =0 (T_l/g) ,

MSE: E (g@ - &)2 -0 (T—2/3) .

Let the number of samples in each resampling period to
be (1)L, and denote T £ Zlel T;. Further denote the
sample average in the [-th resampling period to be:

T
ooal - (T1)
o1, = Tl Z¢(xl )
=1

where {xl(T’)} denotes samples in the [-th resampling pe-
riod. The final sample average is defined as:

Lo
. 1
> Gy
1=1 221'=1
As a result, the bias can be bounded as:
L
T, _

E Ty ¢Tz - ¢‘

1=1 2u'=1
1 R _
=57 ;Tl (Eér, - 0)
B Z Zl’ Tl’
1
Zzﬁ’<ﬂ@
Egro(ien)
v
Optimizing over h, we have
2 - 1 1/2
[Bér — 3] = zlj 5110 (1)

1/2
oS o).

which is the same as the optimal bias bound for SGMGT.

‘EéT - QZE‘ =

Eér, — 95‘

The proof for the optimal MSE bound follows similarly.
O

L. Stochastic slice sampling

In this section, we leverage the connection between slice
sampling and HMC (Zhang et al., 2016), to investigate the
approach to perform slice sampling with subset of data.

Slice sampling (Neal, 2003) augments the density p(6)/C
(where C' > 0 is a normalization constant) with slice vari-
ables u, such that the joint distribution p(6,u) = 1/C, s.t.
0 < u < p(d). To sample from the target distribution,
slice sampling is performed in a Gibbs sampling manner,
i.e., alternating between uniformly sampling the slice vari-
able (slice sampling step) u, and uniformly generating new
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samples 6 (conditional sampling step), from a restricted do-
main such that the (unnormalized) density function values
for 0 are less than the sampled slice variable .

Slice sampling allows moves that can adaptively fit the
scale of the local density structure, thus yielding rapid mix-
ing. When the dataset is large, however, full-data density
evaluations can be very expensive. One recent attempt to
use subset data for slice sampling incorporates a hypothesis
test sub-procedure when performing the conditional sam-
pling step (DuBois et al., 2014). However, the rejection
rate could be large if the mini-batch size is small. Fur-
thermore, samples from the algorithm are biased due to the
hypothesis test step.

One straightforward approach to perform stochastic slice
sampling is by evaluating the likelihood on a subset of
data during the conditional sampling step when perform-
ing standard slice sampling. This approach, detailed in the
SM is referred as naive stochastic slice sampling (Naive
stochastic SS). As shown in Figure 7 in the SM, applying
this naive implementation to a Bayesian linear regression
problem would yield over-dispersed samples.

The reason why naive stochastic slice sampling fails can be
explained by following the logic of Zhang et al. (2016) and
Chen et al. (2014); Betancourt (2015). In (Zhang et al.,
2016), the authors demonstrate the connection between
slice sampling and Hamiltonian Monte Carlo, revealed by
Hamiltonian-Jacobi Equation. As a result, performing slice
sampling can be equivalently realized in an HMC formula-
tion.

We consider mapping naive stochastic slice sampling to its
equivalent HMC space parameterized by model parameter
f and momentum p as in (26) (where the monomial pa-
rameter ¢ = 1, with notation from Zhang et al. (2016)).
This results in an HMC formulation that is equivalent to
the naive stochastic gradient HMC in Chen et al. (2014),
but with different kinetic function, as in (3) when a = 1.
Similar to (Chen et al., 2014), the entropy of the joint distri-
bution of (6, p) would always increase due to the stochastic
noise, explaining the over-dispersion distribution that we
observe in Figure 7 in the SM.

Fortunately, one can leverage the connection between slice
sampling and HMC from Zhang et al. (2016) to perform an
improved stochastic slice sampling. This is done by adopt-
ing the SDE of SGHMC in (7) and substituting the Gaus-
sian kinetic with a softened Laplace kinetic (i.e. K.(p)
when a = 1) as in (11). A friction term AV K (p) is incor-
porate to offset the stochastic noise, resulting in

df = VK.(p)dt, (26)
dp = —[VU(#) + AVK,(p)dt + \/2(AI — B(#))dW .

The resulting stochastic Laplace HMC algorithm (detailed

in the SM) from (26) is (asymptotically) invariant to the
target distribution, and performs equivalently to a correct
stochastic slice sampling in one-dimensional cases, as ¢ —
oo. In Figure 7, the stochastic Laplace HMC sampler can
ameliorate the over-dispersion of sampled posterior distri-
bution than naive stochastic slice sampling.

M. Naive stochastic slice sampling and
Stochastic Laplacian HMC

The naive stochastic slice sampling can be described in Al-
gorithm 1

Algorithm 1 Naive stochastic SS.

Input: Initial parameter 6.

fort=1,2,... do
Sampling a mini-batch Z;.
Evaluate stochastic negative log-density Uz, (6;_1)
exp[—logp(f:-1) — &7 Xpres, logp(@'0s-1)]-
Uniformly sample u; from (0, exp[—Uz, (6;_1)]).
Sample 6, from {0 : Uz, (0) < log(—us)} using dou-
bling and shrinking (Neal, 2003).

end for

L

According to Zhang et al. (2016), Algorithm 1 has deep
connection to Algorithm 2 in HMC formulation, in univari-
ate scenarios.

Algorithm 2 Naive stochastic SS in HMC space.

Input: Initial parameter 6.
fort=1,2,... do
Sampling a mini-batch ;.
Sampling each momentum p independently (for each
6 dimension) from a Laplacian distribution £(m),
where m > 0 is the mass parameter.
fors=1,2,... do
Evaluate stochastic gradient, VU (6), from (5) on
mini-batch z;.
Perform leap-frog updates using (4) by substituting
the VU (#) with VU(0) and substituting VK (p)
with sign(p)/m.
end for
end for

By adding a friction term as in Chen et al. (2014) we
provide the corrected SG-MCMC Algorithm 2 that corre-
sponds to stochastic slice sampling.
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[ Stochastic Laplace HMC
[ INaive stochastic SS
—— Oracle density

Probablity density

Figure 7. Naive stochastic slice sampling vs. Stochastic Laplacian
HMC

Algorithm 3 Stochastic Laplacian HMC

Input: Initial parameter 6.
fort=1,2,... do
Sampling a momentum p from a distribution
exp(—K.(p)) with K (p) defined in (11), where ¢ is
the softened parameter.
fors=1,2,... do
Sampling a mini-batch z;.
Evaluating stochastic gradient VU (6) from (5) on
mini-batch z;.
Performing leap-frog updating using SDE in (26).
end for
end for

We provide the empirical density drawn by naive stochas-
tic slice sampling and stochastic Laplacian HMC on a syn-
thetic Bayesian linear regression problem with one feature
dimension. For each instance 4, y; ~ N (betax;,1). We
estimate the posterior of the single parameter 3. The syn-
thetic dataset has 100 training samples. We use a minibatch
size of 30 for each method, and collect 2,000 Monte Carlo
iterations. For stochastic Laplacian HMC we use a stepsize
of 0.1 the diffusion parameter A is set to be 7 and the soften
parameter is set to be 1. From 7, the stochastic Laplacian
HMC can better recover the target distribution.



