Stochastic Gradient Monomial Gamma Sampler

Yizhe Zhang' Changyou Chen' Zhe Gan' Ricardo Henao' Lawrence Carin'

Abstract

Recent advances in stochastic gradient tech-
niques have made it possible to estimate poste-
rior distributions from large datasets via Markov
Chain Monte Carlo (MCMC). However, when
the target posterior is multimodal, mixing per-
formance is often poor. This results in inade-
quate exploration of the posterior distribution. A
framework is proposed to improve the sampling
efficiency of stochastic gradient MCMC, based
on Hamiltonian Monte Carlo. A generalized ki-
netic function is leveraged, delivering superior
stationary mixing, especially for multimodal dis-
tributions. Techniques are also discussed to over-
come the practical issues introduced by this gen-
eralization. It is shown that the proposed ap-
proach is better at exploring complex multimodal
posterior distributions, as demonstrated on mul-
tiple applications and in comparison with other
stochastic gradient MCMC methods.

1. Introduction

The development of increasingly sophisticated Bayesian
models in modern machine learning has accentuated the
need for efficient generation of asymptotically exact sam-
ples from complex posterior distributions. Markov Chain
Monte Carlo (MCMC) is an important framework for draw-
ing samples from a target density function. MCMC sam-
pling typically aims to estimate a desired expectation in
terms of a collection of samples, avoiding the need to
compute intractable integrals. The Metropolis algorithm
(Metropolis et al., 1953) was originally proposed to tackle
this task. Despite great success, this method is based
on random walk exploration, which often leads to ineffi-
cient posterior sampling (with a finite number of samples).
Alternatively, exploration of a target distribution can be
guided using proposals inspired by Hamiltonian dynam-
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ics, leading to Hamiltonian Monte Carlo (HMC) (Duane
et al., 1987). Aided by gradient information, HMC is able
to move efficiently in parameter space, thus greatly improv-
ing exploration. However, the emergence of big datasets
poses a new challenge for HMC, as evaluation of gradients
on whole datasets becomes computationally demanding, if
not prohibitive, in many cases.

To scale HMC methods to big data, recent advances in
Stochastic Gradient MCMC (SG-MCMC) have subsam-
pled the dataset into minibatches in each iteration, to de-
crease computational burden (Welling & Teh, 2011; Chen
et al., 2014; Ding et al., 2014; Ma et al., 2015). Stochas-
tic Gradient Langevin Dynamics (SGLD) (Welling & Teh,
2011) was first proposed to generate approximate sam-
ples from a posterior distribution using minibatches. Since
then, research has focused on leveraging the minibatch idea
while also providing theoretical guarantees. For instance,
Teh et al. (2014) showed that by appropriately injecting
noise while using a stepsize-decay scheme, SGLD is able to
converge asymptotically to the desired posterior. Stochas-
tic Gradient Hamiltonian Monte Carlo (SGHMC) (Chen
et al., 2014) extended SGLD with auxiliary momentum
variables, akin to HMC, and introduced a friction term to
counteract the stochastic noise due to subsampling. How-
ever, exact estimation of such noise is needed to guaran-
tee a correct SGHMC sampler. To alleviate this issue, the
Stochastic Gradient Nosé-Hoover Thermostat (SGNHT)
(Ding et al., 2014) algorithm introduced so-called thermo-
stat variables to adaptively estimate stochastic noise via a
thermal-equilibrium condition.

One standing challenge of SG-MCMC methods is ineffi-
ciency when exploring complex multimodal distributions.
This limitation is commonly found in latent variable mod-
els with a multi-layer structure. Inefficiency is mani-
fested because sampling algorithms have difficulties mov-
ing across modes, while traveling along the surface of the
distribution. As a result, it may take a very large number of
iterations (posterior samples) to cover more than one mode,
greatly limiting scalability.

We investigate strategies for improving mixing in SG-
MCMC. We propose the Stochastic Gradient Monomial
Gamma Thermostat (SGMGT), building upon the Mono-
mial Gamma Sampler (MGS) proposed by Zhang et al.
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(2016). They showed that a generalized kinetic func-
tion typically improves the stationary mixing efficiency of
HMC, especially when the target distribution has multi-
ple modes. However, this advantage comes with numeri-
cal difficulties, and convergence problems due to poor ini-
tialization. By defining a smooth version of this general-
ized kinetic function, we can leverage its mixing efficiency,
while satisfying the required conditions for stationarity of
the corresponding stochastic process, as well as alleviat-
ing numerical difficulties arising from differentiability is-
sues. To ameliorate the convergence issues, we further in-
troduce ) a sampler with an underlying elliptic stochastic
differential equation system and i) a resampling scheme
for auxiliary variables (momentum and thermostats) with
theoretical guarantees. The result is an elegant framework
to improve stationary mixing performance on existing SG-
MCMC algorithms augmented with auxiliary variables.

2. Preliminaries

Hamiltonian Monte Carlo Suppose we are interested
in sampling from a posterior distribution represented as
m(0|X) x p(X|0)p(d) = exp[-U(0|X)], where 6 de-
notes model parameters and X = {z1,...,zy} repre-
sents [NV data points. Assuming i.i.d. data, the potential
energy function U(6|X) denotes the negative log poste-
rior density, up to a normalizing constant, i.e., U(0|X) =
— Zi\il log p(x;|0) — log p(#). For simplicity, in the fol-
lowing we omit the conditioning of X in U(6|X), and
write U(6). In HMC, the posterior density is augmented
with an auxiliary momentum random variable p; p is in-
dependent of 6, and typically has a marginal Gaussian dis-
tribution with zero-mean and covariance matrix M. The
joint distribution is written as p(6, p) o< exp[—H (6, p)] =
exp[-U(8) — K(p)], where H(0,p) is the total energy
(or Hamiltonian) and K (p) = 1p” M ~'p is the standard
(Gaussian) kinetic energy function, and M is the mass ma-
trix. HMC leverages Hamiltonian dynamics, driven by the
following differential equations

do = M~ ‘pdt, dp = -VU()dt, (1)
where ¢ is the system’s time index.

The total Hamiltonian is preserved under perfect simula-
tion, i.e., by solving (1) exactly. However, closed-form
solutions for p and € are often intractable, thus numerical
integrators such as the leap-frog method are utilized to gen-
erate approximate samples of § (Neal, 2011). This leads to
the following update scheme:

Pi+1/2 = Pt — %VU(Q::) )
01 =0p + M pria o, 2)
Pt+1 = Pty1/2 — %VU(QtH) )

where ¢ is the stepsize.

Monomial Gamma HMC In the Monomial Gamma
Hamiltonian Monte Carlo (MGHMC) (Zhang et al., 2016)
algorithm, the following generalized kinetic function is
employed as a substitute for the Gaussian kinetics of stan-
dard HMC:

K(p) = (|p|>5)" M~ |p|=a 3)

where |p| 2a denotes the element-wise power operation, a
is the monomial parameter. Note that when a = 1/2, (3)
recovers the standard (Gaussian) kinetics. For general a,
the update equations are identical to (2), except for

Orr1 =01 + eVE(pry1)2) - 4)

Zhang et al. (2016) proved in the univariate case that
MGHMC can yield better mixing performance when the
sampler reaches its stationary distribution, under perfect
dynamic simulation, i.e., infinitesimal stepsize in the limit
and adequate (finite) simulation stepsize. Additionally, it
was shown that for multimodal distributions sampled via
MGMHC, the probability of getting trapped in a single
mode goes to zero, as a — 00.

However, these theoretical advantages are accompanied by
two practical issues: ¢) the numerical difficulties accentuate
dramatically as a increases, due to the lack of differentia-
bility of K (p) for a > 1, and ¢4) convergence is slow with
poor initialization. For example, in (3) and (4), if 6; is far
away from the mode(s) of the distribution, VU (6;) will be
large, causing the updated momentum p; /o to blow up.
This renders the change of 0, i.e., VK (p;11/2), to be arbi-
trarily small for large a, thus slowing convergence.

Stochastic Gradient MCMC SG-MCMC is desirable
when the dataset, X, is too large to evaluate the potential
U(#) using all N samples. The idea behind SG-MCMC
is to replace U(6) with an unbiased stochastic likelihood,
U(G), evaluated from a subset of data (termed a minibatch)

U0) = -5 logp(z-,

where {71, -+, 7y} is a random subset of {1,2,--- , N}
of size N’ <« N. SG-MCMC algorithms are typically
driven by a continuous-time Markov stochastic process of
the form (Chen et al., 2015)

) —logp(),  (5)

dr = V(T')dt + D(T)dW , (6)

where I' denotes the parameters of the augmented sys-
tem, e.g., p and 0, V(-) and D(-) are referred as drift and
diffusion vectors, respectively, and W denotes a standard
Wiener process.

In SGHMC (Chen et al., 2014), the resulting stochastic dy-
namic process is governed by the following Stochastic Dif-
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ferential Equations (SDEs) (with M = I):
df = pdt ,

7
dp = —[VU(0) + Apldt + \/2(AI — B(0))dW @

where T' = {6, p}, V(') is a function of {p, V,U, A}, and
D(T') is a function of {A, B(#)}. VU(6) is modeled as
VU(6) = VU(9) + \/2B(0)v, where v ~ N'(0,1) and h
is the discretization stepsize. B(0) is an estimator of B(6),
A is a user-specified diffusion factor and I is the identity
matrix. Chen et al. (2014) set B(#) = 0 for simplicity. The
reasoning is that the injected noise N (0,2Ah) will dom-
inate as h — 0 (A remains as a constant), whereas B(0)
goes to zero. Unfortunately, the covariance function, B(#),
of the stochastic noise, v, is difficult to estimate in practice.

Recently, SGNHT (Ding et al., 2014) considered incorpo-
rating additional auxiliary variables (thermostats). The re-
sulting SDEs correspond to

dp=—[VU(6) + € © pldt + V2AIdW ,  (8)
df =pdt,d§ = (pop—1)dt, ©)

where © represents the Hadamard (element-wise) product
and ¢ are thermostat variables. Note that the diffusion fac-
tor, A, is decoupled in (8), thus £ can adaptively fit to the
unknown noise from the stochastic gradient VU (6).

3. Stochastic Gradient Monomial Gamma
Sampler

We now consider ) a more efficient (generalized) kinetic
function, ¢) adapting the proposed kinetics to satisfy sta-
tionary requirements and alleviate numerical difficulties,
111) incorporating an additional first-order stochastic pro-
cess to (8) and 7v) stochastic resampling of the momentum
and thermostats to lessen convergence issues.

Generalized kinetics The statistical physics literature
traditionally considers a quadratic form of the kinetics
function, and a Gaussian distribution for the thermostats
in (8), when analyzing the dynamic system of a canonical
ensemble (Tuckerman, 2010). Inspired by this, one typ-
ical assumption in previous SG-MCMC work is that the
marginal distribution for the momentum and thermostat is
Gaussian (Ding et al., 2014; Li et al., 2016). However, this
assumption, while convenient, does not necessarily guaran-
tee an optimal sampler.

In recent work, Lu et al. (2016) extended the standard
(Newtonian) kinetics to a more general form inspired by
relativity theory. By bounding the momentum, their rela-
tivistic Monte Carlo can lessen the problem associated with
large potential gradients, VU (6;), thus resulting in a more
robust alternative to standard HMC. Further, Zhang et al.

(2016) demonstrated that adopting non-Gaussian kinetics
delivers better mixing and reduces sampling autocorrela-
tion, especially for cases where the posterior distribution
has multiple modes.

These ideas motivate a more general framework to charac-
terize SG-MCMC, with potentially non-Gaussian kinetics
and thermostats. As a relaxation of SGNHT (Ding et al.,
2014; Ma et al., 2015), we consider a Hamiltonian system
defined in a more general form

H=K(p)+U(0)+ F(&), (10)

where K (-) and F'(-) are any valid potential functions, in-
herently implying that exp[—K(-)] and exp[—F'(-)], define
valid probability density functions.

We first consider the SDEs of SGNHT with generalized ki-
netics K (p). The system can be obtained by generalizing
K(p) = pT'p/2 (with identity mass matrix M for simplic-
ity) in (8) with arbitrary K (p), thus

df = VK (p)dt,
(

dp = —[VU(0) + £ © VK (p)|dt + V2AIdW , (11)
d¢ = (VK (p) © VK (p) — V2K (p))dt.

However, if we set K (p) as in (3) with a > 1, the dynamics
governing the SDEs in (11) will often fail to converge. This
is because the sufficient condition to guarantee that the Itd
process governed by the SDEs in (11) converge to a sta-
tionary distribution generally requires the Fokker-Planck
equation to hold (Risken, 1984). Further, the existence and
uniqueness of the solutions to the Fokker-Planck equation
require Lipschitz continuity of drift and diffusion vectors
in (6) (Bris & Lions, 2008). Unfortunately, this is not the
case for the drift vectors in (11) when a > 1, as VK (p) is
non-differentiable at the origin, i.e., p = 0.

Softened kinetics The above limitation can be avoided
by using a softened kinetic function K.(p). However, to
keep the performance benefits from the original stiff kinet-
ics, we must ensure that K.(p) has the same tail behavior.
We propose that for a = {1, 2}, the softened kinetics are
(for clarity we consider 1D case, however higher dimen-
sions still apply)

—p+2/clog(l+e?), a=
e = = , (12
Y { 2 e, =2 0 (1

where ¢ > 0 is a soffening parameter. Note that K.(p) is
(infinitely) differentiable for any c and asymptotically ap-
proaches the stiff kinetics as ¢ — co. A comparison be-
tween stiff kinetics, K (p), and softened kinetics K.(p) is
shown in Figure 1, for different values of c. Discussion and

formulation of the softened kinetics for arbitrary a (and M)
are provided in the Supplementary Material (SM).
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Figure 1. Softened vs. stiff kinetics (1D). Left: a = 1. Right:
a=2.

To generate samples of the momentum variable, p, from
the density with softened kinetics, which is proportional
to exp[—K.(p)], we use a coordinate-wise rejection sam-
pling, i.e., the proposed p, for the d-th dimension is re-
jected with probability 1 — exp[K (pq) — K.(pq)]-

In practice, setting c to a relatively large value would still
make the gradient VK, (p) ill-posed close to p = 0, thus
causing high integration error when simulating the Hamil-
tonian dynamics. Conversely, setting c to a small value will
cause a high approximation error w.r.t. the original K (p),
thus resulting in a less efficient sampler. Consequently, ¢
has to be determined empirically as a trade-off between in-
tegration and approximation errors.

Additional First Order Dynamics Inspired by Ma et al.
(2015), we consider adding Brownian motion to ¢ and &
in (8), with variances oy and o¢, respectively, while main-
taining the stochastic process (asymptotically) converging
to the correct marginal distribution of 8. Specifically, we
consider the following SDEs:

d0 = — ogVU (0)dt + VK, (p)dt + /204dW ,
dp = — (op +7VF(§)) © VKc(p)dt

— VU(B)dt + \/20,dWV , (13)
d§ =~ [VE.(p) © VK.(p) — V2K (p)] dt

— 0¢VF(&)dt + \/20¢dW .

The variances {og,0p,0¢} control the Brownian mo-
tion for {6,p,£}, respectively, and v > 0O denotes a
rescaling factor for the friction term of momentum up-
dates. The additional terms —oy VU (6)dt + /204dW and
—0¢VF(£)dt+ \/20¢dW can be understood as first-order
Langevin dynamics (Welling & Teh, 2011). The variance
term, g, controls the contribution of VU (0) to the update
of @ wr.t. VK.(p). This is analogous to the hyperparam-
eter balancing VU(H) and p in the SGD-with-momentum
algorithm (Rumelhart et al., 1988). Derivation details for
VK.(p) and V2K_(p) in (12), as well as other values of a,
are provided in the SM.

The following theorem, proven in the SM, shows that un-
der regularity conditions, the SDEs in (13) lead to poste-

rior samples from the invariant joint distribution p(I") o
exp[—H (I")], yielding the desired marginal distribution
w.r.t. 0 as p(0) x exp[—U(0)].

Theorem 1. The stochastic process governed by (13) con-
verges to a stationary distribution p(T") o« exp[—H(T)],
where H(T') is as defined in (10), and T = {0, p, £}

The reasoning behind increasing stochasticity in the SDEs
is two-fold. First, the additional Langevin dynamics are
crucial to SG-MCMC with generalized kinetics for large
a. For instance, for 0y = 0, the update for 6 from (11)
is Oi41 = 0 + VK(pt)h. When a > 1 and |p| is large,
VK (p) = L|p[*/*=! will be close to zero, thus 6, (the
next sample) will be close to 6;, i.e., the sampler moves
arbitrarily slow. As discussed by Zhang et al. (2016), this
can happen when 6 moves to a region where the gradient
VU(0) takes a large absolute value, e.g., near the low-
density regions in a light-tailed distribution. Fortunately,
the additional Langevin dynamics in (13), —oy VU (0)dt +
V209dW, compensate for the weak updating signal from
VK (p), by an immediate gradient signal VU (6). Addi-
tionally, when U(#) becomes small, VK (p) will become
large. As a result, these two updating signals VK (p) and
vU (9) compensate each other, thereby delivering a stable
updating scheme. Likewise, the immediate gradient V F'(£)
in (13) can provide complementary updating signal for the
thermostat variables, &, to offset the weak deterministic up-
date VK, (p) ©® VK.(p) — V2K_(p), when p is large.

Second, (13) has noise components on all parameters,
{0, p, £}, making the corresponding SDEs elliptic. From a
theoretical perspective, ellipticity/hypoellipticity are neces-
sary conditions to guarantee existence of bounded solutions
for a particular partial differential equation related to the
diffusion’s infinitesimal generator, which lies in the core of
most recent SG-MCMC theory (Teh et al., 2014; Vollmer
et al., 2016; Chen et al., 2015). Ellipticity is characterized
by a noise process (Brownian motion) covering all compo-
nents of the system, via the diffusion, D(T"), in (6). This
means D(T") is block diagonal, thus a positive definite ma-
trix (Mattingly et al., 2010). In a typical hypoelliptic case,
the noise process is imposed on a subset of I'. However,
hypoellipticity also requires the noise to be able to spread
through the system via the drift term, V' (T"), which may not
be true for general V'(T"). For instance, in (8), I' = {6, p, £}
and D(T") is block diagonal with entries {0,v2AI, 0}, i.e.,
0 and ¢ are not explicitly influenced by the noise process,
W, thus hypoellipticity cannot be guaranteed.

To the authors’ knowledge, for existing SG-MCMC algo-
rithms, only SGLD where df = —V U (0)dt++/2dW, sat-
isfies the ellipticity property, while other algorithms such
as SGHMC and SGNHT assume hypoellipticity, thus their
corresponding D(I") are not positive definite.

One caveat of (13) is that if oy and ¢ are too large, the up-
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Figure 2. Momentum resampling. Top: stochastic process with
resampling helps sampler move quickly to a lower Hamiltonian
contour. Bottom: resampling decreases energy step-wise during
burn-in stage. Resampling of p occurs every 100 iterations.

dates will be dominated by first-order dynamics, thus los-
ing the convergence benefits from second-order dynamics
(Chen et al., 2014). In practice, oy and o¢ are problem-
specific, thus need to be tuned, e.g. , by cross-validation.

Stochastic resampling When generating samples from
the stochastic process in (13), we resample momentum
and thermostats from their marginal distribution with a
fixed frequency, instead of every iteration from their con-
ditionals. Since the momentum and thermostats are drawn
from the independent marginals of stationary distribution
p(T") x exp[—H (I")], it can be shown that reconstructing
the stochastic process with the solution of the SDEs will
still leave the stochastic process invariant to the target sta-
tionary distribution (Brunick et al., 2013).

To simplify the discussion, consider a stochastic process of
a particle {6, p} as in (11) with fixed . As show in Fig-
ure 2, suppose the initial value of 6 is far from the maxi-
mum a posteriori value. The dynamics governed by (11)
will stochastically move along the Hamiltonian contour.
The total Hamiltonian energy level is affected by the joint
effect of the stochastic diffusion and momentum refraction
(i.e., -Epdt), which changes continuously over time.

From previous discussions, moving on a high Hamiltonian
contour when a > 1 is less efficient because the absolute
value of the momentum, |p|, will get increasingly large,
slowing down the movement of §. Resampling of momen-
tum according to its marginal will enable the sampler to
immediately move to a lower Hamiltonian energy level.

At the burn-in stage, this momentum-accumulation/energy-
drop cycle seen in Figure 2(bottom) via resampling mo-
mentum can happen several times, until equilibrium is
found. In practice, the resulting energy level is often much
lower than initially, thereby delivering a more efficient and
accurate dynamic updating.

The frequency of resampling from the marginal of the sta-
tionary distribution can have a direct impact on the mixing
performance. Setting the frequency too high will result in
a random-walk behavior. Conversely, with a low frequency
resampling, the random-walk behavior is suppressed at a
cost of fewer jumps between trajectories associated with
different energy levels. It is advisable to increase the re-
sampling frequency if the sampler is initialized on low-
density (e.g. light-tailed) region.

The resampling step on p and & plays a role that is similar
to adding a Langevin component to 6, in the sense that both
improve convergence for ¢ > 1. However, these two strate-
gies (resampling and Langevin) are fundamentally differ-
ent. We empirically observe that resampling is most helpful
during burn-in, while the additional Langevin-style updates
are more helpful with mixing during stationary sampling.

SGMGT The specifications described above constitute
an SG-MCMC method for the SDEs in (11), which we call
Stochastic Gradient Monomial Gamma Thermostat (SG-
MGT). We denote the SG-MCMC method with additional
Brownian motion on 6 and £ in (13) as SGMGT-D (Diag-
onal), i.e., with o9 > 0 and o¢ > 0. The complete update
scheme, with Euler integrator, for SGMGT is presented in
the SM. Note that with a = 1/2,09 = 0,0¢ — 0,¢ — 00,
SGMGT-D recovers SGHMC as in Chen et al. (2014).
Moreover, when a = 1/2,09 = 0,¢ — o0, it becomes
SGNHT as in Ding et al. (2014).

We note that SGMGT-D improves upon SGNHT in three
respects: (¢) we introduce generalized kinetics, which prov-
ably yield lower autocorrelations than standard HMC, es-
pecially in multimodal cases; (i7) the additional stochastic
noise on thermostat variables yields more efficient mixing;
(#i1) we use stochastic resampling to allow for faster in-
terchange between different energy levels, thus alleviating
sampling stickiness.

To the authors’ knowledge, despite existing analysis for
Langevin Monte Carlo (Bubeck et al., 2015; Dalalyan,
2016), rigorous analysis and comparison of the mixing per-
formance of general SG-MCMC is very difficult, thus not
yet established. Toward understanding the mixing perfor-
mance of SGMGT-D, we argue that as the minibatch size
increases, and the contribution of the diffusion in (6) de-
creases, the SGMGT-D will approach MGHMC, in which
case, a large a will result in high stationary mixing perfor-
mance, especially when sampling multimodal distribution,
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as theoretically shown by Zhang et al. (2016). Although
our experiments support our intuition, a more formal theo-
retical justification is needed. We leave this as interesting
future work.

We observe empirically that when increasing the value of
a, SGMGT-D may not always achieve superior mixing per-
formance. One possible reason for this is a larger value
of a induces “stiffer” behavior of exp[—K (p)] at p = 0,
which typically requires a higher level of softening, thus
higher rejection rates during the rejection sampling step.
Also, when the dimensionality of p is higher, the rejection
rate of the rejection sampling step increases (proportional
to p). In such cases, the efficiency of the sampler decreases
with large a. For these reasons, we limit our experiments
toa = {1, 2}.

We clearly have more hyperparameters than SGNHT. In
practice, we fix M = I, a = {1,2}, and set the resam-
pling frequency 7, = T = 100, which provides robust
performance. Thus, only two additional hyperparameters
are employed (o and o¢) compared to SGNHT, and these
parameters require further tuning. We use either validation
or a hold-out set in our experiments.

More accurate numerical integrators Using a first-
order Euler integrator to approximate the solution of the
continuous-time SDEs in (13), leads to O(h) errors in the
approximate samples (Chen et al., 2016). Alternatively,
we can use the symmetric splitting scheme of Chen et al.
(2016) to reduce the order of the approximate error to
O(h?). Details of the splitting used in this work are pro-
vided in the SM.

Convergence properties The SGMGT framework, as an
instance of SG-MCMC, enjoys the same convergence prop-
erties of general SG-MCMC algorithms studied in Chen
et al. (2015). It’s worth to mention that on challenging
problems the posterior may not be densely sampled to yield
ideal posterior computation, and the asymptotic theory is
being used as a useful heuristic. Specifically, it is of in-
terest to quantify how fast the sample average, (ﬁT, con-
verges to the true posterior average, ¢ = [ ¢(6)m(0|X)d6,
for o £ % Zthl ¢(0;), where T is number of iterations.
Here we make the same assumptions of Chen et al. (2015),
and further assume that a first-order Euler integrator and a
fixed stepsize are used.

Proposition 2. For the proposed SGMGT and SGMGT-D
algorithms, if a fixed stepsize h is used, we have:

Bias: ’E¢ST - (;_5‘ —O(1/(Th) +h) |,
MSE: E (qB - 05)2 =0 (1/(Th) + h?) .

This proposition indicates that with larger number of itera-
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Figure 3. Synthetic multimodal distribution. Left: empirical dis-
tributions for different methods. Right: traceplot for each method.

tions and smaller step sizes, smaller bias and MSE bounds
can be achieved. We note that these bounds have simi-
lar rates compared to other SG-MCMC algorithms such as
SGLD, however, as we demonstrate below in the exper-
iments, SGMGT and SGMGT-D usually converge faster
than existing SG-MCMC methods.

In addition, for stochastic resampling, we can extend
Proposition 2 to the following complementary results:

Lemma 1. Letr w, be the stationary distribution of
SGMGT-D. The stationary distribution of SGMGT-D with
momentum resampling is the same as mp,.

Lemma 2. The optimal finite-time bias and MSE bounds
for SGMGT-D with momentum replacement remain the
same as SGMGT-D.

Proofs of Lemma 1 and Lemma 2 are provided in the SM.
The proposed SGMGT framework has a strong connection
with second-order stochastic optimization methods, lead-
ing to a sampling scheme with minibatches with similar
mixing performance as slice sampling (Neal, 2003). We
discuss the details of this in the SM.

4. Experiments
4.1. Multiple-well Synthetic Potential

We first evaluate the mixing efficiency of SGMGT and
SGMGT-D for a synthetic problem, to generate samples
from a complex multimodal distribution. The distribution
is shown in Figure 3(left). See SM for the definition of
its potential energy. The modes are almost isolated with a
low-density region connecting each other. Consequently,
traversing between modes is difficult. In order to simu-
late the noise of the gradient estimates, we set VU (6) =
VU (0) + N(0,2B), similar to Ding et al. (2014), where
B=1.

We compare SGNHT with SGMGT and SGMGT-D with
monomial parameter ¢ = 2 and fix 7y = 1. For all three
algorithms, we try a number of hyperparameter settings,
e.g., stepsize h, {0g, 0p, 0¢ }, and the soft parameter ¢, and
present the best results in Figure 3. Standard SGNHT fails
to escape from one of the modes of the distribution. For
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Table 1. Average AUROC and median ESS. Dataset dimensional-
ity is indicated in parenthesis after the name of each dataset.

AUROC (D) A5 G(25 H(14) P(8) R(7) C@®7
SGNHT 0.89 0.75 0.90 0.86 0.95 0.65
SGMGT(a=1) 0.92 0.78 0.91 0.86 0.87 0.70

SGMGT-D(a=1) 0.95 0.86 0.95 0.93 0.98 0.73
SGMGT(a=2) 0.93 0.79 0.93 0.88 0.86 0.62
SGMGT-D(a=2) 0.95 0.90 0.95 0.90 0.97 0.69

ESS (D) A(l5 G@5 H(4) P8 RO CED

SGNHT 869 941 1011 2077 1761 1873
SGMGT-D(a=1) 3147 2131 2448 4244 1494 3605
SGMGT-D(a=2) 2700 1989 2768 3430 2265 2969

SGMGT with a = 2, the generated samples reached 3
modes. For SGMGT-D with a = 2, the sampler identi-
fied all 5 modes. In Figure 3(right), SGMGT-D adequately
moves across different modes and yields rapid mixing per-
formance, unlike SGMGT which exhibits stickier behavior.

4.2. Bayesian Logistic Regression

We evaluated the mixing efficiency and accuracy of SG-
MGT and SGMGT-D using Bayesian logistic regression
(BLR) on 6 real-world datasets from the UCI repository
(Bache & Lichman, 2013): German credit (G), Australian
credit (A), Pima Indian (P), Heart (H), Ripley (R) and Car-
avan (C). The data dimensionality ranges from 7 to 87, and
total observations vary between 250 to 5822. Gaussian pri-
ors are imposed on the regression coefficients. We set the
minibatch size to 16. Other hyperparameters are provided
in the SM. For each experiment, we draw 5000 iterations
with 1000 burn-in samples.

Results in terms of median Effective Sample Size (ESS)
and prediction accuracies as Area Under Receiver Oper-
ating Characteristic (AUROC) are summarized in Table 1.
All the results are averages over 5 independent runs with
random initialization. In general, SGMGT-D performs bet-
ter than SGMGT. For higher-dimensional dataset Cavaran,
the performance of a = 2 decreases significantly, indicat-
ing numerical difficulties. The performance gap between
SGMGT and SGMGT-D with a = 1 or @ = 2 is usually
larger than the gap between SGNHT (a = 0.5). Presum-
ably when a is greater than 1, SGMGT-D has better con-
vergence.

4.3. Latent Dirichlet Allocation

We also test our methods on Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). Details of LDA and our im-
plementation are provided in the SM. We use the ICML
dataset (Chen et al., 2013), which contains 765 documents
corresponding to abstracts of ICML proceedings from 2007
to 2011. After stopword removal, we obtain a vocabulary
size of 1918 and about 44K words. We use 80% of the doc-
uments for training and the remaining 20% for testing. The
number of topics is set to 30, resulting in 57,540 parame-
ters. We use a symmetric Dirichlet prior with concentration

Table 2. The test perplexity with varying stepsize.

stepsize 004 005 006 007 008 009 0.1
SGLD 1058 1054 1058 1067 1037 1048 1057
SGNHT 1104 1144 1039 1024 1043 1067 1107

SGMGT(a=1) 996 988 990 986 996 998 997
SGMGT-D(a=1) 987 983 996 996 992 1013 1029
SGMGT(a=2) 1024 1029 1030 1013 1030 1022 1043
SGMGT-D(a=2) 968 994 973 957 961 954 970

B = 0.1. All experiments are based on 5000 MCMC sam-
ples with 1000 burn-in rounds. We set the minibatch size to
16. Other hyperparameter settings are provided in the SM.

Table 2 shows the test perplexities for SGMGT and
SGMGT-D for different stepsizes. For each method we
highlight the best perplexity. The SGMGT-D with a = 2
outperforms other methods, however SGMGT with a = 2
fails to achieve a comparable result with SGMGT with
a = 1, probably because a good initialization is hard to
achieve for a high-dimensional distribution.

4.4. Discriminative RBM

We applied our SGMGT to the Discriminative Restricted
Boltzmann Machine (DRBM) (Larochelle & Bengio,
2008) on MNIST data. We choose DRBM instead of RBM
because it provides explicit stochastic gradient formulas.

We evaluated our methods empirically and compare them
with SGNHT. We use one hidden layer with 500 units. For
each method we performed 1500 iterations with 200 burn-
in samples. The minibatch size is set to 100. Details of
the hyperparameter settings for SGMGT and SGMGT-D
are provided in the SM. As shown in Figure 4(right-most
3 panels), we observe that SGMGT-D with a = 2 yields a
superior mixing performance. For SGMGT-D with a = 2,
the posterior samples demonstrated both rapid local mix-
ing, and long-range movement. In contrast, SGLD seems
trapped into a local mode after around 500 iterations.

Figure 4(left) shows that SGMGT-D with a = 2 deliv-
ers the fastest convergence with the highest test accuracy,
0.976. The SGMGT-D improves over SGMGT, while per-
formance of SGMGT-D seems to increase with a large
value of a. We observed that the stochastic resampling
played a crucial role for SGMGT, as removing the resam-
pling step resulted in a large drop in testing performance
and mixing efficiency.

4.5. Recurrent Neural Network

We test our framework on Recurrent Neural Networks
(RNNs) for sequence modeling (Gan et al., 2017). We con-
sider two tasks: (i) polyphonic music prediction; and (if)
word-level language modeling, detailed below. Additional
details of the experiment are provided in the SM.
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Figure 4. Experimental results for DRBM. Left: testing accuracies for SGLD, SGNHT, SGMGT and SGMGT-D. Middle-left through
right: traceplots for SGLD, SGNHT and SGMGT-D with a = 2, respectively.

Polyphonic music prediction We use four datasets:
Piano-midi.de (Piano), Nottingham (Nott), MuseData
(Muse) and JSB chorales (JSB) (Boulanger-Lewandowski
et al., 2012). Each of these are represented as a collection
of 88-dimensional binary sequences, that span the whole
range of piano from AQ to C8.

We use a one-layer LSTM (Hochreiter & Schmidhuber,
1997) model, and set the number of hidden units to 200.
The total number of parameters is around 200K. Each
model is trained for 100 epochs. We perform early stop-
ping, while selecting the stepsize and other hyperparame-
ters by monitoring the performance on validation sets. Up-
dates are performed using minibatches from one sequence.

Language modeling The Penn Treebank (PTB) cor-
pus (Marcus et al., 1993) is used for word-level language
modeling. We adopt the standard split (929K training
words, 73K validation words, and 82K test words). The
vocabulary size is 10K. We train a two-layer LSTM model
on this dataset. The total number of parameters is approxi-
mately 6M. Each LSTM layer contains 200 units.

Table 3. Test negative log-likelihood results on polyphonic music
datasets and test perplexities on PTB using RNN.

Algorithms Piano Nott Muse JSB PTB

SGLD 11.37 6.07 10.83 11.25 127.47
SGNHT 9.00 424 785 927 1313
SGMGT (a=1) 790 435 842 867 1206
SGMGT (a=2) 10.17 4.64 851 884 2505
SGMGT-D (a=1) 7.51 333 7.11 846 1138
SGMGT-D (a=2) 7.53 335 7.09 843 109.0
SGD 11.13 526 10.08 10.81 120.44
RMSprop 7770 348 722 852 12045

Results are shown in Table 3. The best log-likelihood re-
sults on the test set are achieved by using SGMGT-D with
either a = 1 or a = 2 (depending on the dataset). To com-
pare with optimization-based methods, we also include re-
sults for SGD (Bottou, 2010) and RMSprop (Tieleman &
Hinton, 2012). A more comprehensive comparison is pro-
vided in the SM.

Learning curves for Nott and PTB datasets are shown in
Figure 5. We omit the SGLD results since they are not com-

parable with other methods. For both datasets, we observe
that SGMGT-D delivers fastest convergence. The best neg-
ative log-likelihood is achieved by SGMGT-D a = 1. The
difference between ¢ = 1 and @ = 2 is small, though
SGMGT-D with a = 2 seems to decrease slightly faster
after 20 epochs for PTB data.

; Nott 500 Penn Treebank
- op —SGNHT -
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Figure 5. Learning curves of different SG-MCMC methods on se-
quence modeling using RNN. Left: Nott. Right: Penn Treebank.

We also observe that the SGMGT with a = 2 seems subop-
timal compared with SGMGT with ¢ = 1 and SGNHT. We
hypothesize that numerical difficulties hinder the success
of SGMGT with a = 2, especially in higher-dimensional
cases, and without the additional Langevin components of
SGMGT-D.

5. Conclusions

We improve upon existing SG-MCMC methods with sev-
eral generalizations. We employed a more-general kinetic
function, which we have shown to have better mixing ef-
ficiency, especially for multimodal distributions. Since
practical use of the generalized kinetics is limited by
convergence issues during burn-in, we injected additional
Langevin dynamics and incorporated a stochastic resam-
pling step to obtain generalized SDEs that alleviate the
convergence issues. Possible areas of future research in-
clude designing an algorithm in a slice-sampling fashion,
which maintains the invariant distribution by leveraging
the connections between HMC and slice sampling (Zhang
et al.,, 2016). In addition, it is desirable to design an al-
gorithm that can adaptively choose the monomial parame-
ter a, thereby achieving better mixing while automatically
avoiding numerical difficulties.
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