
Insertion-base Text
Generation

Yizhe Zhang
@yizzhang at NLP, MSR AI

2

This Talk
• Sentence-level Insertion Generation

• [ACL 2020] INSET: Sentence Infilling with INter-SEntential Transformer
• https://arxiv.org/abs/1911.03892
• Semantic-aware sentence insertion

• Word-level Insertion Generation
• [under submission] POINTER: Constrained Text Generation via Insertion-based Generative

Pre-training
• https://arxiv.org/abs/2005.00558
• Non-autoregressive generation from lexical constraints

• Orthogonal to each other

INSET: Sentence Infilling with INter-SEntential
Transformer

g

4

Sentence Infilling (w/ and w/o hints)

5

Possible scenarios

• Document auto-completion: suggesting missing bridging sentences in the
surrounding context

• Collaborative document writing: unifying different writing styles from multiple
authors

• Note expansion: extending a set of keywords to a full sentence, leveraging the
surrounding context

6

INSET: INter-SEntential Transformer

• Understanding (BERT-like encoder)
• planning (sentence-level Transformer)
• generation (GPT-like decoder)

7

INSET: INter-SEntential Transformer

• Understanding (BERT-like encoder) : BERT-base size 110M
• A BERT-based encoder to map each sentence to the latent semantic space

(768 dimension vector)

8

INSET: INter-SEntential Transformer

• planning (sentence-level Transformer) : BERT-base size, 110M
• A sentence-level semantic planner to infer the missing information that can

bridge the semantics of preceding and following context.

9

INSET: INter-SEntential Transformer

• generation (GPT-like decoder) : GPT-small size 117M
• A GPT-based generator (decoder) to map semantic features back to the text

domain.

10

INSET: INter-SEntential Transformer (w/ keywords hint)

• Constraint feature encoder (BERT-like encoder) : BERT-base size 110M
• Distillation-like objective
• Teacher: fixed sentence encoder
• Student: constraint feature encoder with no position embedding.

’

k1 k2 [PAD] [PAD] [PAD]

Cosine-similarity Loss

11

Model Training

• Train a denoising auto-encoder (DAE) for the encoder and decoder
• Train a sentence-level transformer for the planner
• Joint training is possible.

12

Advantages

• Good at capturing long-term/semantic-level inter-sentential correlation.
• Enable leveraging the pre-trained models (BERT, GPT-2)
• Can handle long text. Significant reduction of computation (time/memory)

13

Evaluation & Baseline

• Evaluation: 7 sentences, predict the 4th sentence. (w/ w/o keyword hints)

• Dataset:
• TripAdvisor

• One of the widely used datasets.
• (Train/dev/test) = (1.1M / 62K / 533)

• Recipe
• Time-ordered procedure. Ideal for evaluating the inter-sentential planning/reasoning.
• (Train/dev/test) = (1.1M / 56K / 500)

(Train/dev/test) = (1.1M/62K/533)

14

Metrics & Baseline

• Evaluation:
• Relevance: Standard machine translation metrics, including BLEU, NIST, METEOR.
• Diversity: Entropy (ENT-n) and Distinct score (DIST-n).
• Human evaluation.

• Baseline
• Text infilling (W. Zhu, Z. Hu, and E. Xing, Text Infilling, arXiv:1901.00158, 2019.)

15

Sentence representation learning

16

Automatic evaluation

17

Human evaluation

18

Generated examples

19

Summary

• We study the task of sentence infilling, which is analogous to the masked
language modeling task for (pre-)training BERT, but at sentence-level.

• INSET is designed to handle long-range inter-sentential correlation.

• INSET decouple three aspects of the task (understanding, planning, and
generation).

POINTER: Constrained Text Generation via
Insertion-based Generative Pre-training

∗ ∗

21

Hard-constrained Text Generation

• Generating sentence from keywords/key-phrases

• Possible scenarios: title generation, note expansion, story generation

• Hard-constrained Text Generation: all the predefined lexical constraints need to
be present in the given order.

22

Previous works

• CGMH: Constrained Sentence Generation by
Metropolis-Hastings Sampling (AAAI 2019)

• sampling-based approach
• Words in a random position are either inserted,

deleted or updated under a Metropolis-Hastings-
like scheme.

• Issue:
• Can easily get stuck into local optimal. (e.g. “Hong

Kong”)
• Slow inference.

23

Previous works

• NMSTG: Non-Monotonic Sequential Text
Generation (ICML 2019)

• Non-autoregressive generation approach
• A tree-based text generation scheme: the model

recursively generates words to its left and right,
yielding a binary tree.

• Issue:
• Sentence-to-Tree structure is a one-to-many mapping
• Time complexity for inference is the same as

autoregressive approach.

24

POINTER (PrOgressive INsertionbased TransformER)

At each stage, the algorithm inserts tokens progressively:
• From the original lexical constraints (଴), first generates high-level words (e.g.,

informative nouns, verbs and adjectives)
• Then adding the less informative words (e.g. pronouns and prepositions)
• This process iterates until the generation is converged (no more edit).

25

POINTER (PrOgressive INsertionbased TransformER)

Our objectives:
• An intuitive top-down progressive generation.
• Allows better long-term planning/control.
• Can leverage pretrained BERT.
• Logarithm inference speed.

26

POINTER (PrOgressive INsertionbased TransformER)

Principles:
• More important tokens should be generated earlier => progressive
• Number of stage should be small => fast

Non-trivial to design a training objective like this!

27

Data preparation

Data preparation:
• Token Importance Scoring
• Data Instance Construction

28

Data preparation

Data preparation:
• Token Importance Scoring
• Data Instance Construction

29

Data preparation

Data preparation:
• Token Importance Scoring
• Data Instance Construction

• Progressive => mask “important”
words last

• Fast => mask as many as possible

• => House Robber Problem!
(LEETCODE #198)

30

Model Training

Stage-wise Insertion Prediction:
• BERT(MLM)-like objective
• Expanding the vocab with [NOI] for

non-insertion.
• Large-scale Pre-training on Wiki.

31

Generation

• Naïve Greedy Decoding:
conditional-independence at each
stage

• Inner-layer Beam Search (ILBS)
1) Generates top B token candidates

by applying one evaluation step.

2) Sweeps the generations to find the
approximately optimal stage-wise
decoding.

32

Evaluation

33

Human evaluation

34

Generated examples and speed comparison

35

Live demo

36

Summary

• A simple yet powerful approach to progressively generating text.

• A pre-trained non-autoregressive model on wiki.

• Both automatic and human evaluation demonstrate the effectiveness of
POINTER.

