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This Talk
• Sentence-level Insertion Generation

• [ACL 2020] INSET: Sentence Infilling with INter-SEntential Transformer
• https://arxiv.org/abs/1911.03892
• Semantic-aware sentence insertion

• Word-level Insertion Generation
• [under submission] POINTER: Constrained Text Generation via Insertion-based Generative 

Pre-training
• https://arxiv.org/abs/2005.00558
• Non-autoregressive generation from lexical constraints

• Orthogonal to each other



INSET: Sentence Infilling with INter-SEntential
Transformer
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Sentence Infilling (w/ and w/o hints)
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Possible scenarios

• Document auto-completion: suggesting missing bridging sentences in the 
surrounding context

• Collaborative document writing: unifying different writing styles from multiple 
authors

• Note expansion: extending a set of keywords to a full sentence, leveraging the 
surrounding context
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INSET: INter-SEntential Transformer

• Understanding (BERT-like encoder) 
• planning (sentence-level Transformer) 
• generation (GPT-like decoder)
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INSET: INter-SEntential Transformer

• Understanding (BERT-like encoder) : BERT-base size 110M
• A BERT-based encoder to map each sentence to the latent semantic space 

(768 dimension vector)
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INSET: INter-SEntential Transformer

• planning (sentence-level Transformer) : BERT-base size, 110M
• A sentence-level semantic planner to infer the missing information that can 

bridge the semantics of preceding and following context.  
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INSET: INter-SEntential Transformer

• generation (GPT-like decoder) : GPT-small size 117M
• A GPT-based generator (decoder) to map semantic features back to the text 

domain.
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INSET: INter-SEntential Transformer (w/ keywords hint)

• Constraint feature encoder (BERT-like encoder) : BERT-base size 110M
• Distillation-like objective
• Teacher: fixed sentence encoder 
• Student: constraint feature encoder with no position embedding.

’

k1 k2 [PAD] [PAD] [PAD]

Cosine-similarity Loss
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Model Training

• Train a denoising auto-encoder (DAE) for the encoder and decoder 
• Train a sentence-level transformer for the planner 
• Joint training is possible. 
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Advantages

• Good at capturing long-term/semantic-level inter-sentential correlation.
• Enable leveraging the pre-trained models (BERT, GPT-2)
• Can handle long text. Significant reduction of computation (time/memory)
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Evaluation & Baseline

• Evaluation: 7 sentences, predict the 4th sentence. (w/ w/o keyword hints)

• Dataset: 
• TripAdvisor

• One of the widely used datasets.
• (Train/dev/test) = (1.1M / 62K / 533)

• Recipe
• Time-ordered procedure. Ideal for evaluating the inter-sentential planning/reasoning.
• (Train/dev/test) = (1.1M / 56K / 500)

(Train/dev/test) = (1.1M/62K/533)
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Metrics & Baseline

• Evaluation: 
• Relevance: Standard machine translation metrics, including BLEU, NIST, METEOR.
• Diversity: Entropy (ENT-n) and Distinct score (DIST-n).
• Human evaluation. 

• Baseline
• Text infilling (W. Zhu, Z. Hu, and E. Xing, Text Infilling, arXiv:1901.00158, 2019.) 
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Sentence representation learning
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Automatic evaluation
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Human evaluation



18

Generated examples
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Summary

• We study the task of sentence infilling, which is analogous to the masked 
language modeling task for (pre-)training BERT, but at sentence-level.

• INSET is designed to handle long-range inter-sentential correlation. 

• INSET decouple three aspects of the task (understanding, planning, and 
generation). 



POINTER: Constrained Text Generation via 
Insertion-based Generative Pre-training

∗ ∗
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Hard-constrained Text Generation

• Generating sentence from keywords/key-phrases

• Possible scenarios: title generation, note expansion, story generation

• Hard-constrained Text Generation: all the predefined lexical constraints need to 
be present in the given order.
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Previous works

• CGMH: Constrained Sentence Generation by 
Metropolis-Hastings Sampling (AAAI 2019)

• sampling-based approach
• Words in a random position are either inserted, 

deleted or updated under a Metropolis-Hastings-
like scheme.

• Issue: 
• Can easily get stuck into local optimal. (e.g. “Hong 

Kong”)
• Slow inference.
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Previous works

• NMSTG: Non-Monotonic Sequential Text 
Generation (ICML 2019)

• Non-autoregressive generation approach
• A tree-based text generation scheme: the model 

recursively generates words to its left and right, 
yielding a binary tree. 

• Issue: 
• Sentence-to-Tree structure is a one-to-many mapping
• Time complexity for inference is the same as 

autoregressive approach.
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POINTER (PrOgressive INsertionbased TransformER)

At each stage, the algorithm inserts tokens progressively:
• From the original lexical constraints ( ଴), first generates high-level words (e.g., 

informative nouns, verbs and adjectives)
• Then adding the less informative words (e.g. pronouns and prepositions)
• This process iterates until the generation is converged (no more edit).
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POINTER (PrOgressive INsertionbased TransformER)

Our objectives:
• An intuitive top-down progressive generation.
• Allows better long-term planning/control.
• Can leverage pretrained BERT. 
• Logarithm inference speed.
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POINTER (PrOgressive INsertionbased TransformER)

Principles:
• More important tokens should be generated earlier => progressive
• Number of stage should be small  => fast

Non-trivial to design a training objective like this!
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Data preparation

Data preparation:
• Token Importance Scoring
• Data Instance Construction
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Data preparation

Data preparation:
• Token Importance Scoring
• Data Instance Construction
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Data preparation

Data preparation:
• Token Importance Scoring
• Data Instance Construction

• Progressive => mask “important” 
words last

• Fast => mask as many as possible

• => House Robber Problem! 
(LEETCODE #198)
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Model Training

Stage-wise Insertion Prediction:
• BERT(MLM)-like objective
• Expanding the vocab with [NOI] for 

non-insertion.
• Large-scale Pre-training on Wiki.
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Generation

• Naïve Greedy Decoding: 
conditional-independence at each 
stage

• Inner-layer Beam Search (ILBS)
1) Generates top B token candidates 

by applying one evaluation step.

2) Sweeps the generations to find the 
approximately optimal stage-wise 
decoding.
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Evaluation
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Human evaluation
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Generated examples and speed comparison
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Live demo
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Summary

• A simple yet powerful approach to progressively generating text.

• A pre-trained non-autoregressive model on wiki.

• Both automatic and human evaluation demonstrate the effectiveness of 
POINTER.


