Appendix for Towards Unifying Hamiltonian Monte Carlo
and Slice Sampling

A Ilustration of MG-SS with different monomial parameters a
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Figure 4: MG-HMC and equivalent MG slice sampler. Red and blue dashed lines denote the
conditionals p(y:|z:) and p(z+y1|y:), respectively.

The MG-SS for 0 < a < 1,a = 1 and a > 1 are illustrated in Figure 4. When 0 < a < 1, the
conditional distribution p(y;|z;) is skewed towards the current unnormalized density value f(x;).
The conditional draw of p(x¢11|y;) encourages taking samples with smaller density value (small
moves), within the domain of the slice interval X. On the other hand, when a > 1, draws of y; tend to
take smaller values, while draws of x;; encourage sampling from those with large density function
values (large moves). Intuitively, setting a to be small makes the auxiliary variable, y,, stay close to
f(ay), thus f(x441) is close to f(xy). As aresult, a larger a seems more desirable.

B Monomial Gamma distribution

Several useful observations can be drawn from monomial Gamma distribution:

I'(3a+1),_ 92

1) The mean and variance for it is 0 and 53 @™ @ respectively.

2) Scaling. For any A > 0,
Y ~MG(a,m) = AY ~MG(a, |\ *m)

3) As a — oo, the distribution, regardless of scale, becomes more heavy-tailed.

C Periodicity of Hamiltonian flow and higher dimensional HMC equivalents

First note that lim,_, 1o, U(x) — oo, since the integral [ exp(—U(x)) is finite. From definition
lim,,_, 1o K(p) — oo. Given above conditions, if the target distribution has one dimension, the
Hamiltonian flow is periodic, and the Hamiltonian contour is closed [26].

In (5), f;(T) f(z)*'dz € [0, [[H —U(z)]*"'dz]. For one dimensional problems, the Hamiltonian

dynamics described in (5) has a period T £ 2a [, [H — U(z)]*~*dz. Since the K (p) has symmetric
form, the contour is symmetric along p = 0. In the second half of the period, the particle x simply
reverse the motion of the first half period.

However, if the dimensionality D is higher than one, the periodicity assumption will almost never be
true, the flow will typically be quasi-periodic as the periods of each 1D component would not exactly
match. In those cases, the hamiltonian trajectory is a one-dimensional manifold in high-dimensional
space. If uniformly sample a time 7 from an interval with width much larger than [], Ty, where
T, is the period for d-th dimension, the hamiltonian trajectory will behave like a dynamic billiard
[13]. With infinite evolutionary time, the trajectory will almost certainly cover each point in a hyper-
rectangle ' Y = {x : Ly < 29 < Ry, forall ,d € {1,---,D}}, which is one of the maximum

Tsuppose the U (z) is decomposable over dimensions, if not the hyper-rectangle will become hyper-diamond
in the high-dimensional space.
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hyper-rectangles that lives within the slice interval X = {z : U(z) < H}. For each dimension d, the
boundary of the hyper-rectangle L, and R, are determined by the last sample point x;_;.

The Hamiltonian trajectory and corresponding slice interval are shown in Figure 5. As in univariate

1.5 ‘ ‘ 2 |
T e el 5 " Slice interval
Hamiltoni 1.5 ’;.»f;‘: AR Hamiltoni
! ,\{\g:o:'o,;;; t%glct%?;/an gx)g/e; 552 {3{ ! t;'if;lcg)r:;an
BN o
02 IS :
N 05
KX R
KRN
&0 WO, 5 &
) SR ‘
KO0
05 WAL SN 05
200
e A P
Y%
M 15
1.5 ‘ )
5 1 05 0 0.5 1 15 2 p 5 : .
X X.

Figure 5: 2D Hamiltonian trajectory and corresponding slice interval when a = 0.5 (left) and a =1
(right).

cases, when a = 0.5, the Hamiltonian dynamic corresponds to a conditional density with less
probability mass in the region with large f(z). When a = 1, the Hamiltonian dynamic corresponds
to a uniform density. However, in each of the case the density is constraint in the hyper-rectangle Y.
Thereby, in cases more than one dimension, even the MG-HMC with a = 1 is not exactly recovering
standard slice sampling, but rather a generalized slice sampler. For simplicity, suppose the mass
matrix is ml, it can be shown that K (p) ~ Gamma(D/a,m), thus, this generalized slice sampler
has iterative procedure (11) as below (Figure 6)

p(ye|ze) o [log f(ze) — logye)P/* 71, 5.8.0 < yi < f(z1) (10)
p(zesalye) o [log f(zip1) —logy)® ', sty €Y (1n
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Figure 6: 2D equivalent generalized slice sampler for MG-HMC a = 1/2. Red and blue dashed
lines denote the conditionals p(y;|z;) and p(z441|y:), respectively. (1) and 2(?) denote the first and
second dimension of target distribution
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D Connecting HMC with generalized kinetics and slice sampling

We show in 2 and 3 that the generalized kinetic form K (p) = |p|'/?,a > 0 lead to MG-SS 2.
In fact, for the generalized kinetic form with mass parameter and monomial parameters, K (p) =
|p|1/ @/m,a,m > 0, the conclusion still holds. To see this, one may rederive equations (3)-(8) using
this generalized kinetic energy.

The (3) becomes

dW (x)

e Ve m—p =0. (12)

U(z) +|

Solving (12) for W (x) gives

z(T) N
Wi = [ mperare,  fa={ {070 2 R0 ay
Hence, from (2) we have
z(7)
= maa/ f(2)* Yz — 7, (14)

Tmin

For the (14), Hamiltonian dynamics with generalized kinetics K (p) = |p|*/¢/m,a,m > 0 has
period 2m®a [, [H(-) — U(z)]'~“dz and is symmetric along p = 0 (due to the symmetric form of
the kinetic function). The system time, 7, is uniformly sampled from a half-period of the Hamiltonian
dynamics.

7 ~ Uniform (—x', -z’ + m“a/X[H(') - U(Z)]a1>

The constant m®a does not matter because when we transform the problem using inverse CDF
methods, this constant would diminish from the formulation due to the normalization. From the
inverse CDF transform sampling method, uniformly sampling 7 from half of a period and solving for
x* from (5), are equivalent to directly sampling z* from the following density

pe*|HC)) o [H() — U@E)]*Y,  st, H() = U(z*) > 0. (15)

Denote ; = e~ ("), by substituting H,(-) with y; in (6), the conditional updates for this new sam-
pling procedure can be rewritten as below, yielding the MG-SS with arbitrary momomial parameter
a > 0, with conditional distributions defined as

1
Sampling a slice: p(y¢|z:) = W[log f(x) —log yt]lfa, st 0 <y < f(zy), (16)
1

Za(o0) llog f(zis1) —logye]' ™", st fze) >y,

7

Conditional sampling: p(z¢y1|y:) =

Note that the mass parameter m in generalized kinetic function will not influence the density (16)
and (17)

E Theoretical properties of MG sampler

E.1 Convergence properties of MG-SS

Following [27] and [1], we show in below that the MG-SS is reversible and Harris ergodic. As a
result, the chain is guaranteed to uniquely and asymptotically converge to the target distribution.
Next, following standard slice sampler [27], we show that MG-SS is uniformly ergodic under the
Doeblin’s conditions [28] in Lemma 27.

#We hypothesize that this proposition holds for 0 < a < 1, however we leave it for further investigation.
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Lemma 2 (Uniform ergodicity) Suppose f(-) is bounded and has bounded support. If a > 1, the
analytic MG-SS is uniformly ergodic.

Geometric ergodicity is a less restrictive property compared to the uniformly ergodicity. In MG-SS,
we hypothesize this requires yZ4(y) to be non-increasing. Formal verification of these conditions is
beyond the scope of this paper, thus is left as intersting future work.

E.1.1 Invariance

Theorem 3 (7-invariant) The Hamiltonian dynamics S : (x,p) — (2/,p’) with parameter a, is
T-invariant.
Proof First, the total Hamiltonian H is perserved with Hamiltonian dynamics.

A _SHdp | SHds

dt  dpdt Sz dt
Thus, for any f(z,p)

efH(x,p) e*H(S(va))

Buo (@) = [ £lop) 5 dodp = [ f(o.p) ", | \dwdp

By Liouville’s theorem, |.J;| = 1. Therefore, Er(; ) f(7,p) = Ex(z)f(S(x,p)), the transforma-
tion S is 7-invariant. |

E.1.2 Reversibility
Proposition 4 (Reversibility, detailed balance) For the transition kernel in eqn. (31). We have
En_l(w’lw)x/ = E"”vh(ﬂﬁ'\z)x/'
h
Proof From the symmetric form of the joint distribution, we have #; (2'|z)p(z) = sy *(z|z")p(z’).

Using induction we have ry,(2'|z)p(x) = &, ' (z|2')p(2’). Thus, Eﬁrl(m,lw)x’ =E., (z|ne’ W

E.1.3 Harris ergodicity

Theorem S (Harris ergodicity) The MG sampler with parameter a, is Harris ergodic with invariant
distribution p(x). kp (-, x) is the h-th transition kernel.

6w (-, ) — p(x)|lrv — 0, as h — oo

Further, ||kn (-, ) — p(x)|| is monotonically nonincreasing in h. (Meyn and Tweedie (1993), proposi-
tion 13.3.2)

Proof Following Lemma 1 of Tan and Hobert (2008), it can be shown that MG sample is reversible,
aperiodic and m-irreducible. The Harris recurrent property follows directly from Corollary 1 of
Tierney (1994), which states that an w-irreducible Markov chain is Harris recurrent if for some h,
KR, - is absolutely continuous w.r.t. p(x) for all z € X. [ |

Note that for MG-HMC, the Harris ergodicity cannot be directly extended from above conclusion,
because 1) MG-HMC has fixed leap-frog step, 2) the Hamiltonian dynamics would not allow moving
between contours with same energy. However, [29] showed that HMC is m-irreducible under the
assumption that the potential energy has an upper bound. One can use the similar technique to show
such conclusion holds for MG-HMC.

E.1.4 Geometric ergodicity

Establishing such ergodicity for general cases requires demonstrating the drift and minorisation
conditions [30]. [31] has showed that for any univariate log-concave density f(-), the resulting Markov
chain associated with the slice sampler is geometrically ergodic, and the quantitative convergence
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bounds are available. In fact, a necessary condition for any multivariate density being geometrically
ergodic is that yu/(y) is non-increasing with respect to y, where p(y) is the Lebesgue measure of
the slice interval {w : f(w) > y}, and the prime symbol denotes derivative w.x.t. y. In MG-SS, we
hypothesize this requires yZ5(y) to be non-increasing, However we leave the formal verification for
future work.

E.1.5 Uniform ergodicity

Proposition 6 (Uniformly ergodic) If f(+) is bounded and have bounded support, the analytic MG-SS
with a > 1 is uniformly ergodic, i.e. ,

lim sup |kp(xo,x) — p(x)||7v = 0.
h—o0 T0€EX

Proof Following [27] and [1], without lossing generality, assume f(-)€[0, 1] and the support for
f(-)is [0,1]. A sufficient and necessary condition to demonstrate uniform ergodicity, is by Doeblin’s
condition [28]. The c.d.f. of transition kernel is given by,

() = Pr(f(zee1) >nlf(ze) =v).
To establish Doeblin’s condition, we will first show that £(v) is decreasing in v for V7, when a > 1.
With some algebra one can obtain,

1 Zy(w) — Ze()
€0 = o, Za(w)

1 v
= m/o max{ K (w; n,v),0}dw,

- (logv — log w)* *dw

Where K (w;,0) 2 (1~ 2485 ) - (log v —logw) L. Za(w) = [y,,.,,(log f(2) ~log )"~ dx.

When a > 1, Z5(w) is decreasing in w. To see this, suppose w1 > wa,

Zo(wy) < / (log z — logw: ) 'dx
f(@)>w;

< / (logz — logwy)* tdax = Zs(ws).
f(@)>w:

Denote ¢(w) = (1 — 5;{33) 1(w) is decreasing in w, and ¥(w) > 0 when w € (0,77) When

v > 1, we have,

() = vrlw)/OUK(w;n,v)dw.

Taking derivatives gives,

§v) =

@ |

1 " o
~ T (a) /0 Y(w) - (logv — logw)® ™ dw

/ " (w) - (log v — logw)*~*dw
0

v

>

1 n
s ‘Tr(a)/o D(w) - h(w)duw,

where we denote h(w) = (logv — logw — a + 2)(logv — logw)®~2, it can be validated that
J h(w)dw = 0. Meanwhile, one can also validate that Jwy € (0, v), where h(w) > 0 for Vw €
(0,wp) and h(w) < 0 for Vw € (wg, v). Therefore,

00 = gy J, o)~ bt
1w
= o [ ) - vt
1 n
"~ T (a) /w [ (w) = ¥ (wo)]h(w)dw < 0.



The inequality follows because 1 (w) is increasing in w. Likewise, one can obtain that When v < n,
&(v) can be written as,

€0 = p | Ko

Thereby, similar to the case of v > 7, we have,

€0) = g |, ) - v
1w
= i [, )~ vl
_vzlﬂl(a) /wo [¢(w) — Y (wo)]h(w)dw < 0.

Thus, £(v) is equally decreasing in v, where v € [0, fo], fo = max(f(x)). The upper and lower
bound of £(v) can be achieved by lim,_,¢ {(v) and lim,,_, ) £(v), which are non-degenerate cdf for
7. Thus one can establish uniform ergodicity via Doeblin’s condition. The case a = 1 is standard
slice sampling, and has been shown to be uniformly ergodic with bounded f and have bounded
support [27]. |

E.2 Theoretical result about autocorrelation
E.2.1 Proof of p,(1) >0

We will first prove the Proposition 7, showing that p, (1) > 0.
Proposition 7 The one-step autocorrelation, p,(1) £ p(xy, 214 1), is non-negative.

From (7) and (8), and provided the conditional density p(x|y:) and p(z¢41]|y:) have the same form,
we have

Exixipr = ]Ep(yt)[]Ep(l't‘yt)xt]Ep(It+1|yt)It+1] = ]Ez)(yt)[]Ep(le\yt)xt"‘lP ) (18)

where p(z|y) is the conditional distribution defined in (8). From (18), when p(x) is symmetric at
x = c(cbeing a constant) , K, . |,,)%: = Ex, which gives pz(1) = 0. From (18) and the Jensen’s
inequality, assuming the sampler has reached stationary period, we can obtain

[Ez]? = [Ep(y)Ezv(fcly)x]2 S Eriwipn < By []Ep(m\y)xQ] = Ea?

This indicate 0 < p,(1) <1

E.2.2 Autocorrelation for {y:};—12,...

The analytic MG-SS performs sampling in an iterative manner, i.e., Ty — Yy — Ti41 —> Y1 - -
To gain insights about the limiting behavior of {z; }+~1 ..., when a goes to infinity, we first consider
the Markov Chain of {y; };=1,..., which can be analytically calculated regardless of the form of U (x).
Particularly, we will show that lim,_,c p(ys, ye+1) = 0. Also, that p(y;, y++r) is a non-negative
decreasing function of the time lag in discrete steps h = 1,2, .. ..

We start by finding the autocorrelation p(y:, yi+1). First consider compute p(Hy, H;11), where
H = —logy.
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EH Hipn = Epe)Bpa, o) HBp(r, 4 |20 Hir

L(a)(a+ Ue))e V0]

- EPW[ T(a)e-Un =Epmla+ U@

EH = ! / HB(H)e "dH

T(a)Z,

1 X

= Tz [ M@l Ul s, = By fo+ U @)
Var(H) = EH? - (EH)*= Ep(z)(a+ [a+ Ux))?) — (Ep(z[a + Ul(x)])?
EH H 11 — (EH)? Var,, ) U ()
H;, H = =
p(H, Hit) Var(H) a + Vary, U(x)
Since the mapping from y(H) = exp(—H) is bijective, after some algebra we can obtain

limg 00 p(Yt, Yr+1) = 0. Similarly, for two-step autocorrelation one can obtain

(Ho Hypy) = EHHis — (BH)? _ Bpin) [BpymU @) = (Ep@)U(2))?
PR e Var(H) a+ Var,,)U(x)

Thereby, one can obtain
0 < p(H¢, Hiyo) < p(Hy, Hiyr) (19)

It not hard to further obtain that p(H;, H;45,) is a non-negative decreasing function of step h. After
some algebra, the p(y¢, yr+p) also has this monotonicity w.r.t. h. The property of y as part of the
markov chain gives some intuition on the behavior of z.

E.2.3 Proof of Distillation theory

In order to describe the limiting behavior of p(x4, x+41), We first establish following Lemma

Lemma 8 Define B (0, €) to be the d—dimensional ball around zero with a radius of € and pq, k be

some positive constants, then for sufficient large a and any € = \/pg \l/oﬂ, we have

@i = [ Py s @=W” (@ D(kloga)s
aeee= B(0,e) 2po T I(d/2+1) k(a+1)¥2loga 2ak/2 :

Proof We will prove the result first for d = 1 and d = 2 and then extends the result to d > 3 by
mathematical induction.

For d = 1, it is hard to directly evaluate g(a, 1, €), but we notice that

2 [ 2\ 2 2 2\
g(a,l,e)>/t<1—> dt = Lo =P (1—6).
e Jo 2po ela+1) ela+1) 2po

Taking € = /pg log a“ ) for any k > 0, we have

9 1/2 2\ @ 1/2 1/2 1
glale)> —20 I (1- ) t> 2 Po 1— .
k(a+1)Y/2loga 2po ['(3) k(a+1)/2loga ak/?

For d = 2, we transform the integral to polar coordinate transformation and obtain that

€ 2\ @ 2\ @
g(a,Q,e):ﬂ/ T(1r> dr = TP0__ TPo <16) .
0 2po a+1 a+1 2po

where 7 is an unknown positive constant. With the same ¢, we have

27 Po 1
2.¢€) > 1-— .
9029 2 T e T l)loga{ ak/2}
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Consequently, we would generally guess that for any d > 3, we have

dmr/? (d — 2)N1pd/? {1_ (d+ 1)(kloga)d§1}

d >
9049 2 S5 1) Ma + )72 loga

We use mathematical induction to prove the this inequality. It has already been verified for d = 1 and
d = 2. For d > 3, using polar coordinate, the general g(a, d, €) can be written as

dﬂ'd/2 € 2\ %

a,d,€) = ————— rd=H 11— — ) dr,
o009 = e J, (1 5)
Using integration by parts, we have
€ 2\ @ 2\ a|€ € 2\ a—1
i r 1 d( r > a / d+1< r >
r l—— ) dr==-r%1—- — +— r 1—— dr
/0 < 2p0> d 2p0) o dpo Jo 2po

d 2\ @ € 2\ a—1
€ € a r
=—|1-—) +5— rd+1(1—> dr.
d ( 2p0) dpo Jo 2po
This implies that

(d —2)po poe?—2 2\t
de) = —2"g(d—2 1,€) — 1— — .
9(a,d,€) a+1 9 at 1€ a+1

Sk /2 (20)

Using the induction, we have

(d — 2)l1pd/? (d—1)(klog(a + 1))T" drs  peed—2
R e e BT (1

4
2

(a,d,€) > dm
€
GG = BT 1) k(o + 1) loga

Since € = /pok 1954 the second term can be upper bounded as

va+
poc 2@\ " (kloga)®/?
a+1 2po =~ k(a+1)¥2loga (a+ 1)k/2
Thus, we have
drs Z

gla,d,e) > (d - 2)”173/2 {1 ~ (d—1)(klog(a + 1)z + (klog(a+1))% }

I'(4+41)k(a+1)%2loga 2(a + 1)k/2

N (d—2)1p/? | @t D(klog(a + 1))+
T I(¢+1)k(a+1)¥2loga 2(a + 1)k/2 ’

which completes the proof. |

From Lemma 8, we give the Lemma 9 as below, in order to describe the limiting behavior of
conditional density p(z|H)

Lemma 9 (Distillation) Let p(z) be a non-negative integrable function defined on x € D, where
D C RY. Assume p(z) is thrice differentiable with the third-order derivative being bounded. Define
M ={z:z = argmazy(p(x))} to be the collection of all maximum point(s) of p(x). We assume
p(x) is locally concave on M, i.e., V?p(x) is negative definite for any v € M. Define a measure on

M as
w(z) o< =V3p(x), VreM,

then for any r > 0 and sufficiently large a, we have the following result

J () dz 12 loga  ([p(@)  [lz]p()) loga
—  —E,X| =0
‘fp@c)adx g P Vart C\paea T ety

where py = max p(z).
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Intuitively, Lemma 9 states that when a — oo, the limiting expectation of distribution p(z; a) will
be distilled to the expectation over the domain that maximizes g(x). Assume that our target density
function contains no singular points, and U(x) = —log f(x) has minimum value. From Lemma
9, for any feasible H, when a — oo, we can obtain ]Ep(w‘H)x = ]Eu(w)x, r € M, which are the
expectation of the maximum point(s) of g(x) = H — U(x) (or, minimum point(s) of U(z)) that
do not depend on H. Based on this result, one can establish a Theorem 1 describing the limiting
behavior of p, (1),

Proof We consider the case where M is a finite set, which is the most common scenario. The proof
for M being positive measure follows similarly and will be ignored here.

Let E(z,e,v,p) = {y: ( T(E4 +2vpl)(y — x) < €2} denote the elliptical ball around point
x and $E(M, ¢, v) = UI eM S(xz,e v, pi), where the positive definite matrix X, = —V?p(z)
if 2 is the maximum point and any constants v, p,e > 0. The maximum radius of the elliptical
ball ppax(v) = ()\mm + 20p)~1/2¢, where X is the eigen value of . By solving the equation
21/p3 + S\mian —e2 =0 wrt. p > 0, we can obtain a stable or determined py,,x and we will use
this stable value later. Similarly, we can compute pmin () = (Amax + 2vp) /2.

By the maximality of M and the smoothness of A(H)/B(H) (A(H) and B(H) are defined in
Section F), there must exist some € such that for any €1, €5 < ¢, we have

g(‘rlaehyvpl)mg(x2562ay>p2) :(Z)a VZ'17.’172 €M7

where A° = D\ A. In addition, since we assume p(z) is locally concave at all z; € M and the
second-order derivative of p(z) is continuous, we can quantify the local behavior of p(z) at each
point in M by using the Taylor expansion,

1
p(@) = p(w:) = Vp(@:)(z = 2:) + 5 (@ = 2) " Vp(w:) (@ — i) + O(l|lz = ),
where the tail form is due to the existence of the third-order derivative. By definition we have
Vp(x;) = 0. The local concavity and smoothness ensures that V2p(z;) is negative definite and the
largest and smallest eigenvalue can be controlled by some constants, i.e., there exists some constants
L > 1> 0, such that

—L S )\min(v2p($i)) S Amax(v2p(1‘i)) S _17 vzi S M

Therefore, when ¢ is sufficiently small, we can obtain pp,.x is small as well, and expect p(z) can
be well approximated by some local quadratic function. More precisely, defining py = p(z;) =
max,ep p(x), there exists some v > 0, € > 0, €(, < € such that,

1 L
p(@) =po > 5w = 2) V(e = zi) = vlw — @il = =Gz — @il = vie -z @1)

and

1 l
po = p(x) 2 =5 (@ = 2:) ' Vip(ai) (@ — m:) = viw =zl = Sl - wil* — vl -], 22)
when z € &(x;, €, v, p;) for any x; € M. The constants chosen are not the tightest, but adequate
for the proof.

Now for any € > 0, we will partition the space into £(M, e,v) and D \ £(M, €, v) (short noted as
E(M, €,1)%), and the target can then be written as
v ) B Fi(a) + Fy(a)

D+ fe ey 7 (5

[ zp(z)*dx _ fﬂ?(%)adax fS(M e ® ( _
Jple)*dz J (%)adw fg(M ) (p(w)) dz + fE(M,e,u)C (@)adf” Gi(a) + Gz(a)

Po

S

The proof will be done by bounding the four terms and will be divided into two parts.

1. Bounding F; and G» We first look at F» and G2. When € is small compared to €,
max 3\ o). P(2) will be achieved at some point inside £(M, €, v). This is easy to show. Since

Po > Maxg(aq,e,)e P(T), we can always find an ej < €, such that ming(aq,er ) P(T) >
MaXe (A, e,0)e P(T). Now for any € < ef, maxg(aq,e,)e p(x) must be achieved within (M, €, v).
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We assume €, = ¢ in the proof just for simplicity. The above argument along with (22) suggests
that for sufﬁ(:lently small ¢, it holds that

I
po—, max p(x) = 3 0 Pl

Therefore, for a > 1, we can obtain an explicit decaying rate on F5(a) and G(a) as

(x) a-l (x) Iminag p2. \ 71
|Fy(a)| = ’/ x(p) pdz‘ gCl(l—MPm‘“> 7
E(M,e,v)e Po Po 3po

Jlzllip(=)
where C < b

that

is a absolute constant only depending on p(x). Similarly, we have for Gz (a)

a—1 . 2 a—1
GQ(G) — / <p(l‘)) p(l‘) dx < 02 (1 . lmlnM pmin) ,
EM,ev)e \ PO Do 3po

where Co < [ p(z)/po is an absolute constant depending on p(x).

2. Bounding F; and G; Next, we consider F} (a) and G1(a). Notice that we have

Z/g(w( Vire Sonf (1)

T, EM ;€M

p()\*
SN (e
z;/\/l E(xi,e,v,p4) bo

In addition, we notice by Cauchy-Schwarz inequality that

‘/ (13_1'1)<p(x)> dx‘ < pmax/ (p(x)> dz,
E(zi,€,v,pi) Po E(xi,e,v,p5) Po

Therefore, the key to bound F; and G is to bound the integral | £ p(@)

$HEV,P7) ( o )adx, for which we

have

/ (p(x)>adx 2/ (1 _ _(”3_Ii)TVQP(Ii)(I—$¢)+2u|$—xi|3)ada¢.
E(xi,e,v,pi) Po E(xi,e,v,pi) 2p0

If we transform x — x; to a new variable ¢, we can obtain a simpler form as

a T . a
/ (p(x)) de > / (1 (S + 2ue)t) QL
E(xi,€,v,pi) Do E(z;,€,v,pi) 2p0

This form can be further simplified by doing transformation ¢’ = (; 4+ 2vp;I)'/t on the right, the
key point is to set p; as the solution of equation 2vp3 + Apin(3;)p? — €2 = 0, i.e. fix point pax.

We have
/ (WC)) dz > |Zi+2upmax|_1/2/ (1 ] ) dt. (23)
E(zs,evps) \ PO B(0,¢) 2po

(23) indicates that fg(zi’e’yﬁpi) (pz()m )“da will be lower bounded fB(O 6)( |t” ) dt. Thus, the

remaining task is to compare this quantity with F5 and G5. For a brief summary on this part, we
define

(z)
fé‘(xi,e,l/,pyz) (ppo> dz HtH2 ¢
w; = a and g(avda 6) = /: (1 o ) dt
Ja0 >( |2t||2) o " "

we have w; > |2 + 20 pmax| /2
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S~imilarly, consider the elliptical ball £(x;, ¢, —v, p;) and fixed point pp,i, for equation p =
(Amax(Xs) — 2up)*1/2e, we can obtain

a t2 a
/ (p(m)) de < |%; — 21/pmin|_1/2/ (1 — ””> dt. (24)
E(wire,—v,pi) \ PO B(0,¢) 2po

Notice we can pick up a very small €’ (and the resulted v) for (24) s.t. p/ ;. is bigger than the pyayx in
(23). This is possible since the equation (24) is actually derived by defining new elliptical ball from
the beginning of this proof, i.e.

a a HI2\ @
/ (p(:z:)) de < / (p(m)) de < |%; — 2mein|_1/2/ (1 — ”|) dt.
E(xi,e,v,p;) Po E(xqie’,—v',p}) Po B(0,¢) 2po

(25)
and then we have w; < |%; — 2v/p/ ., |71/2,ie.
15 4 20 pmax] 2 < w; < |B— 20T (26)
Additionally,

Fi(a) G1(a)
— = w;x; + O(e|M]), — = w;
g(a,d, 6) mGZ./\/l ( | I) g(a7d7 6) mGZ./\/l

3. Synthesizing the results The value of g(a,d, €) has been evaluated in Lemma 8. When e is

chosen to be € = /pok \1/0%, we have

C3Pg/2

ga”d’G >—’
( ) k(a+1)% loga

where C'5 is an absolute constant depends only on d. On the other hand, we have

Ga(a) _ Cakla+ 1)210ga(1 _ l) _ Cek(a+1)¥loga 1

gla,d€) ~ Capl/? 3po Csp/? 2a+1)%
:Czkl()ga(a—kl)g’?:(’)(C’g loga )
2C3p (a+1)7 )’

as long as we choose k > % for some r > 0. Similar result holds for F(a) as well. Therefore,

we have

Fi(a) + Fala) ol + 20 g epwim+ O(H b )

G1i(a Ga(a T :
Fala) + Gala) s + 20 %, caq i+ O(dMI) + O(HE %)

The relationship (26) entails that
w; = 5|7+ O(e),

and placing the value of € into the equation, we finally have

— Jlzllip(z) loga
Fi(a) + Fyla) Ceiem Bl wi + O( ™ i)

R0+ Gala) ~ 5, 101+ O(ph 5) + (T2 e )

given the points in M are bounded, which is true in this case. It then follows naturally that

' Jap(@)'de P epm Bl e O{p(l,/z loga (fp(x) + f||x||1p(f€)> : loga }

fp(x)adx B ZwieM 242 fa+ 1 pg/2+1 pg/2+1 a+1)

This completes the whole proof. |
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E.2.4 Proof of Theorem 1

Now it’s ready to prove the Theorem 1, i.e. lim,_, o p(1) = 0. First, to gain some intuitions, we see
from Section F that for the exponential family class of model (with potential function U (z) = a*),
the Ep(w‘H)x = gggg is at order O(HY*“a~'/*) (using A(H) and B(H) as defined in Section F,
ie. A(H) = [py<p ® - 9(z, H)* 'de, B(H) = [}, <y 9(z, H)*"'dz, see Section F for more

details). In fact, for all of our verified cases that can be analytically derived in Section F, ;1)
A(H)
B(H)
in given form, one can verify below proposition, which leads to lim,_,~, p,.(1) = 0.

can be expressed in O(H"a™"), where r is a positive constant. Generally, if

can be expressed

Proposition 10 If E, mr = ggg; can be written as Ep)x (Ziio S’é{"(gg)), where
limpg oo fr(H)/H" = 1, limpy_o0 gr(a)/a” = 1 and Y.)2 s, = 1, one can obtain ,
limg 00 p2(1) = 0.
Proof It can be shown that
ali_)rr;oExtxt+1 = hm Zl/ B(H _HdH
Epl‘ . 1 / Srfr( ) —H
7 a—>oo I'(a) (g gr(a) (H)
Epx = : 1 fr(H) -H
= — s lim A(H)e "dH (28)
7 2w |
The (28) follows by Fubini’s theorem. Let K = H — U(x), for any r > 0, we have,
1 fr( ) _H
ali)ngo ') A(H) dH
7U(x r r—1
— lim [Z /K + O(K™ Ula)” )KafledeKdo:
a—00 a”+ O(a™1)
. F(a+r)+(’)( ()")-T(a+7r—1)
= Zi1E,z- 1 =Z,E
e 10, T(a)(a” + O(a 1)) 15p®
Taking together with (28), we have
Jim Baizigr = (Bpa))®
Thus, limg_00 p2(1) =0 [ |

This establish a sufficient condition for limitation of p,, (1) goes to zero. This characterizes the order
of Ep(w‘H) Z.

We further provide a proof of Theorem 1 for more general cases in univariate setup, based on Lemma 9
(distillation)

Theorem 11 For a univariate target distribution, i.e. exp|—U (z)] has finite integral over R, if U (z)
is thrice differentiable with bounded third-order derivative, the one-step autocorrelation of the MG-SS
parameterized by a, asymptotically approaches zero as a — oo, i.e., lim, 0 pz(1) = 0.

Proof

Let p(H) £ ﬁB(H)e’H. From Lemma 9, one can obtain that lim,_, o % Cy where C

is a constant that is independent with H, where the convergence ratio is characterized by O{ \l/oﬂ +

(;‘f&} where 7 is the unknown constant in Lemma 8. As a result,
[ A(H) A(H) . [ A(H) A(H)\?
lim (oot — By mep | =0, 01, lim (2t — By =t ) = 29
aroo (B(H) v gy ) =0 O M\ B T gy ) 0
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for any distribution p(H ). As a result, we have

a— 00 H

lim Var p(H) < EH
A(
B(

)
)
faw\// Z; EP(H)gEZ;de/p(H)dH:\/GILIEO/<2EZ;_EP(H)%>2CZH

Because 4 v ( H) is bounded, it satisfies the conditions of Dominate Convergence Theorem, i.e., the
integration and limit operations are exchangeable, thus

On the other hand, we have lim,_, Var, ) (%) > 0. As a result, we have
. A(H)
algr()loVarp(H) (B(H)) =0.

Substitute this into (19), one can obtain,

lim Eryr = lim / L‘égir p(H)dH
~ lim ( / ggzj))p(H)dH>2+ lim Var, ) (;11{)
= </ ]1;(([;{];20(H)CZH>2 0= lm I‘(al)Zl i f B(f—);dzdmz ’

By changing the integration order, one can obtain, [ A(H )e‘H dH =T'(a) [ ze~Y®)dz. Similarly,
[ B(H)e H#dH =T(a) [ e"V(®)dz. Notice that Z; = [ e~V (@) dz,

lim Exz,q 1 = (Ex)?,

a—r

Thereby, lim, o0 p(1) =0 [ |

E.3 Discussions for effective sample size

Effective sample size is associated with the variance of estimator based on MCMC sample [18],
and can be used to measure the mixing performance of certain sampler. We hope to show that the
ESS will become full sample size, indicating that the limiting behavior of Monte Carlo samples
from analytic MG-SS becomes decorrelated, as a approaches infinity. ESS is defined as ESS =
N/(1+2x 37, pz(h)), where N is the total number of samples, p,; () is the h-step autocorrelation
function. In this section, we first prove that p,.(h) is non-negative. Then, assume the MG sampler
is uniformly ergodic, i.e., the total variance distance between the h-th transition kernel and p(z) is
bounded by M (z)t", where M (z) is a bounded function and 0 < ¢ < 1 [32], under the condition
that Vary,, (|2 is bounded, where iy, (24 4|2 ) represents the h-order transition kernel, we can

show that p,.(h) is bounded by Ct"/2, with C' a positive constant. If we further assume that p,.(h)
is monotonically decreasing, it can be shown that lim,_, ., ESS = N. When ESS approaches full
sample size, N, the resulting sampler delivers excellent mixing efficiency [5].

E.3.1 Proofof p,.(h) >0
The h-time-lag autocorrelation function p, (h) can be formulated as

IE}0(96) [Enh,(zt+h,\z)xt+hx] - (Em)g
Var(z) ’

pa(h) = (30)
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where, x5, (2411 |71) represents the h-order transition kernel, which can be calculated in a recursive
manner as:

K1(Tralme) = /P($t+1|yt)l?(yt\$t)dyt7'€h($t+h|$t) = /thl(aftﬂ\th)’il(ﬂfwh\xtﬂ)dmtﬂ-

(€29
Proposition 12 The h-order transition kernel, p,(h), is non-negative.
Proof From the reversibility shown above, we have,
Ez2n20 = Ep(ey) [Eny eanlon) 22hE 1 (g o) 20) 2 [Ep(an) By (a7l 2] = (Ex)?
Exon 170 = Ep(a,ani) Brn@onslonsn) T2h4 1B -1 (41, 0]
> By ans)Ery (@/]2) 7] = (Ex)?
Thus, by definition, p,(h) > 0 [ |

E.3.2 Discussions for effective sample size

Proposition 13 (Convergence of moments) Suppose a MCMC sampler is Harris ergodic with invari-
ant distribution p(z). Let rp,(+, x) denote the h-th transition kernel. Define &y (o) = Ey, (2.1 as
the expected value of h-time lag sample. If the variance of transition kernel Var,,, (. ;)(x) is bounded,
when h — oo, we have,

@h(l‘o) = Eﬁh,(xo,-)xh — Exz,

Proof From Harris ergodicity, there exists A’ so that for Ve > 0 and h > I’

/|Kh(-,x)—p(x)\dx < €
X

From Cauchy’s inequality, considering the Harris ergodicity, one can obtain the convergence of the
first moment as,

B 0.2 — Ea| < / 2] [ (20, 2) — p()|da
X

= / 2| - |kn (0, @) — p(@)|2 |k (20, ) — p(2)|Zda
X

h
2

< \//X 22|k (20, ) P(x)|d5”\//X | (20, ) — p(a)|da < S x M(wo) %t

Where S < Var,,, (0 212 + Vary;) & + 2[E, ) 2]*. Thereby,

hl;r& |Eﬁh(107,)xh - ELU| =0

We propose an assumption as below,

Assumption 1 (Expected 1-lag sample) The expected 1-lag sample &1 (x) lies in between the interval
defined by xy and Ex

€[0,1) (32)

If such assumption holds for 1-time lag, the conclusion can be extended to h-time lag using below
Lemma

Lemma 14 (Transitivity) Assume egn. (1) holds when h = 1, it holds for any h € {2,---}.
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Proof We consider using induction, if eqn. (1) holds for h = 1. Without losing generality, we
assume g > Ex, thus we have 0 < &j,_;(x;) — Ex < 29 — Ex, holds for any z,

i‘h(xo) — Ex Ekl(wl‘mo)j}h(xl) — Ex = Ekl(illafo)[ijh(xl) — EJZ]

Ek,y (21]0) (21 — Ez] = Z1(x0) — Ex

IN

Note that Ex,z0 = Ep()n(70)70 and Ep(, ) Zn(20) = Ex, one can validate that

p(z0)
]Ep(wo)[.fh(a?o) — Ex](xo — ]EQ?) 1

pah) = Var(z) ~ Var(z)

/ [ (20) — E2]C (o) dao

Where C(z¢) < (xg — Ez)p(xo). assumption 1 guarantees that 2o — Ex and &1, (z) — Ex, have
same sign. Without loss of generality, we assume xy > Ez, thereby,

h
pa(h) < % / M (20)* C (o) dzy
This indicates that the p, (h) is bounded by an exponentially fast decreasing function, at a speed of
o (t}5> , where ¢t € (0, 1) is the decay rate of total variance distance between xp, (-, ) and p(z). As a
result
_ N - NVar(z) x (1 —t)Y/?2
L+2x 37502 pe(h) — Var(z) (1 — ¢)1/2 + 251/2 [ M (x0) C(x0)dxo

ESS

The monotonicity of p,,(1) could possible be shown by using below Lemmas and assumption 1.

Lemma 15 (Relative distance) Assume p(x) is a well-defined probability density function with
expectation Bx, fr,(x) are a family of function of x, parameterized by h. if,

fhx(x_)iﬁfm €10,1), Efp(z) = Ex
We have,
Efn(z) frn(x) < Ezfr(x) (33)

Proof

Efn () fn(x) — Bz fn(x) = E[fp (2) — Ez][fa(z)]

E[fw (2) — 2] fn(2) — Ba] + Ex[Efn (z) — Ex]

= Elfw () — z][fu(z) —Ex] <0

The last inequality holds because the [fy/ (z) — z][fr(z) — Ez] < 0 for any x. [ |

Given above results, note from stationary assumption that E, 2, (7) = E,E,, (2/|2)7" = E2’ = Ex.
From Lemma 15, letting fr/(x9) = &1(x0) and fr(xo) = &n(xo), one can obtain Expzy >
Exp_120 for t > 1. Thus, p,.(h) > p(h — 1)

Proposition 16 (Monotonicity) Monotonicity for autocorrelation function can be established if
assumption 1 holds. p,(h) > p(h — 1)

As shown in previous sections, when a — oo, the p,(1) — 0. Suppose the p,(h) is monotonically
decreasing, Together with above result that p, (h) decrease in exponential speed, one can conclude
that ESS would converge to the full sample size N.

Theorem 17 (Limiting ESS) If 1) assumption 1 holds, 2) the variance of transition kernel

Vary, (. z)(x) is bounded, 3) uniform ergodicity can be established. When a — oo, we have,
ESS - N
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Proof From Equation (33), for any given a, there exists a H, such that, M t—H/2 < pz(1) for
Vh > H. (M denote the constant of the bound function). Thus,

0o H S H Mi—H/2
Jin D pa()= Y D palh) o+ Jiw, D pe(B)< D 0+l po(l) g =0
h=1 h=1 h=H+1 h=
Note that Y, ; p,(h) > 0. This indicates, lim, oo >y, pz(h) = 0. Thus, ESS — N. [ ]

E4 MG-HMC mixing performance

The analytical MG-HMC (without integration error, with adequate evolving time) is expected to have
the same theoretical property as the analytical MG-SS since they are derived from the same problem
setup. However, the mixing performance of the two methods could differ significantly, especially
when sampling from a multimodal distribution.

Suppose we are sampling from a bimodal distribution. There must exist a critical value yr, such that
when the slicing variable y exceeds yr, the slice interval X will have two disjoint components. The
corresponding Hamiltonian, H, will also have a critical value Hr, below which there would be two
closed Hamiltonian contours associated with the same energy. The nature of Hamiltonian dynamics
only allows moving along a single contour, whereas the analytic MG-SS is able to sample from
distributions with disjoint domain, i.e., X having several disjoint components. As a consequence, the
analytical MG-HMC is expected to be less efficient than its analytic MG-SS counterpart. In order to
move across different modes, the sampler has to have a large Hamiltonian, H > Hr.

To characterize the performance gap between the analytic MG-SS and MG-HMC, we note that the
marginal distribution of H can be obtained as p(H;a) = [H — U(x)]*"te~H /[['(a) Z;]. Therefore,

) [H — U(x)]* tdz
P(HgHT)zl—/ Juwszn x e HdH
H>HT I'(a)Zy
=1- = // [H —U(x)]" ' x e /T'(a)dHdz
H>max(U(x),Hr)
_ e, Hr —U(x)) e U@ gy
Zl U(z)<Hr ['(a)
where (-, -) denotes the lower incomplete Gamma function. Note that F'(a,z) = (‘(1 ”;) is the

cumulative distribution function of Gamma(a, 1), thus is monotonically decreasing with a, and as
a — 00, F(a,x2) — 0. This implies that when « is large enough, the chances of reaching an energy
level that restricts the traversing across modes can be arbitrarily small. Note that as in Section D, the
mass parameter m have no impact on the analysis. As a result, in theory the analytical MG-HMC
with large value of a is particularly advantageous for sampling multimodal distributions.

Figure 7: Left (sample space): critical value (red) of slicing variable y, above which the slice interval
will be disjoint. Right (phase space): critical value (red) of the Hamiltonian H, above which the
contour will have two disjoint components.

F Theoretical autocorrelations and ESS for 1D cases

For derivation conveniency we first introduce several additional denotations. Note that H = —logy,
denoting ¢g(z,H) = H — U(x),s.t.U(z) < H to be the kinetic energy function w.r.t. =z
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conditioning on Hamiltonian H. We further denoting A(H) = fU(gc)<Hx - g(z, H)* du,
B(H) = fU(x)<H g(z, H)* 'dz. Ex4x., 1 can be rewritten as,

e A(H)?
/ raz  BE) ™

Exiziiq

F.1 Theoretical autocorrelation for sampling exponential distribution

For U(x) = /6, > 0, using the definition of A(H) and B(H) from above, one can derive from
algebra that,

0H® Ha+192 E.’Etl't+1 — 92 1
B(H) = AH) = ——— z(1) = =
( ) a ) ( ) a+ CL2 ) p ( ) 02 (I+ 1
Follow similar derivation, one could validate that,
1 Na
«(h) = , ESS 34
pa(h) TEE ) (34)

F.2 Theoretical autocorrelation for sampling positive-truncated Gaussian

In positive-truncated Gaussian case, U(x) = xz, x > 0, we have,

By = LV gy I

2T (a+ 3) e
px(1) = Eﬁtfzttl f/i/ﬂ - w;f D) o R)f 1(>+ 2o
Thereby
pa(1) = W;_ D L e ;(?ff;;* 2) _ 1] cpe(h) = pa(1)" ESS = 1 2pm(1)]/\i1 — p(1))

F.3 Theoretical autocorrelation for U (z) = =¥

The exponential family class of model introduced in [19] have the potential energy with form
U(z) =2%,2 > 0,w > 0. For these model we have,

Ho1%2/%T(2/w)T(a) _ HHYRT(1/w)T (a)

A(H B(H) =
(H) wl(a +2/w)  BUH) wl(a+1/w)
|:F(a+3/w)F(a+1/w) _1] x r(2/w)?
1 . T'(a+2/w)T(a+2/w) I'(1/w)?
px(l) = T(3/w)  T(2/w)?

T(1/w)  T(1/w)?

A rough estimation for above p,.(1) using Stirling’s formula shows that p,.(1) = O(1/(a + 1)). Note
that this results holds for U(x) = 2%,z > 0,w > 0, where 0 is a scale parameter. Interestingly, [16]
showed that if the integration time (leap-frog steps) is fixed, the geometric ergodicity holds only when
w € [1,2]. However, with a random integration time the geometric ergodicity can be established for
any w > 0. For this reason, we use a random integration time in our experiments.

F.4 Theoretical autocorrelation for Gamma

We conducted numerical theoretical analysis on Gamma(r, 1), where » = 2, 3. For each a, one
can apply numerical methods for calculating the integrals A(H ) and B(H). The p,(1) can then be
calculated from Equation (18). The continuous function is plotted by interpolating from functional
evaluation at {0.5,1, 1.5,2,2.5,3,3.5,4} using quadrature.
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G Remedy strategies for numerical issue and convergence issue

G.1 Remedy strategies for numerical issue

To ameliorate numerical difficulties associated with large a (Figure 8 (left)), we propose two remedies,
i.e. Reflection and Softened kinetics.

p
\ —a=1
—a=2
a=0.5 6
— Stiff kinetic
— Soft kinetic
4
X @
4
2
0
-5 0 5
momentum p

Figure 8: Left: issues of large a. Large a leads to a “stiffer” Hamiltonian trajectory. Right: Soft
kinetic vs stiff kinetic

Reflection: Reflection performs well in low-dimensional phase space, but may suffer from sticky
behavior in high-dimensional cases. This is because the probability of a sign change occurrence is
high; recall there are at least 27 turnovers. Besides, the transformation (z, p) + (z, —p) depends
on current (x, p) and the determinant of the corresponding Jacobian is not one. This may lead to
discrepancy in the sampled distribution, though the empirical discrepancy is not very large.

Softened kinetics: We define softened kinetics as
K(p) = —g(p) +2/clog(1 + ), g(p) = sign(p)[p|"/* /m. (35)

Where c is a softening parameter. The comparison between standard kinetics (“stiff” kinetics) and
softened kinetics are shown in Figure 8 (right). This kinetic share same tail behavior with stiff
kinetic K (p) = p'/®/m, and is differentiable, rendering much less numerical error. It asymptotically
approaches standard kinetics when ¢ — co. One can use dimensional-wise importance sampling to
correct the monomial gamma distribution to get momentum from the distribution defined by softened
kinetics. However, when dealing with higher dimensional problems, the rejection rate of importance
sampling step is high (O(D)), which brings additional computational concerns.

In our tested scenarios, softened kinetics usually performs better than reflection in low dimensional
problems, but fails to outperform reflection in high dimensional problems. For specific application,
we advocate to try both to get the maximum of performance. In addition, note that for softened
kinetics 1) the kinetics is modified, thus the theory can not be directly applied. 2) Softened kinetics
requires heavier computation than reflection. 3) The parameter c requires tuning.

Extensions that account for geometric information [5] or using more accurate numerical integrator
[6] may also help alleviating the numerical problems.

G.2 Remedy strategies for convergence issue

If the sampler is initialized in the tail region of a light-tailed target distribution, MG-HMC with
a > 1 may converge arbitrarily slow to the true target distribution, i.e., the burn-in period could take
arbitrarily long time. In Figure 9 we show this issue. To avoid being arbitrarily slow convergence
with random initialization scheme, we suggest two strategies. First, we suggest using a step-size
decay scheme, e.g., € = max(e1p’, €y). In our experiments we use (e1,p) = (10°,0.9), where
€o 1s problem-specific. This allows the sampler to move larger to avoid slow convergence within
burnin-steps, then gradually decreases to a normal step-size to perform stationary sampling. This
approach empirically alleviates the slow convergence problem in our tested scenarios. Second, we
suggest to initialize the sampler from a local maximum of posterior estimated from optimization
methods, such as gradient descent method. This strategy ensure the sample is not initialized in
light-tailed region. Third, with fixed computational budget, we encourage using reducing the leapfrog
step in each iteration and increase the total number of iterations, which is essentially increasing the
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@Ha‘miltoniaB'trajectory H . |/ J©Hamiltonian trajectory |
v : 4

Figure 9: The Hamiltonian trajectory when a = 0.5 (upper) and a = 2 (lower). When a > 1, the
numerical difficulty increases, and samples of  may move slowly in the light-tailed region (far from
x = 0).

resampling rate of momentum variables. However, we note that the MG-HMC sampler with large a
may still be less sensitive when sampling from the light-tail, where a more sophisticated methods
adaptively selecting a during the sampling procedure are presumably useful. It can be proved that
this adaptively selecting a will still leave invariante target distribution. Nevertheless, we left this for
further investigation.

H Analytical MG-SS

H.1 Analytical MG-SS for exponential distribution

For sampling an exponential distribution Exp(0), i.e. U(x) = 0z, x > 0, analytic MG-SS is available
for all a. The procedure is given by

Algorithm 3: Analytical MG-SS for exponential distribution

Input: Total sample size S

Output: Sample results

Initialization: Choose initial sample point x(

for t = 1toS do do
Sample K; ~ Gamma(a, 1), find H; = x:/0 + K,
Sample 7 ~Uniform(0, 1)
Sample 24,1 = (1 — 7Y/*)0H,

end for

H.2 Analytical MG-SS for positive-truncated Gaussian distribution

Here we provide the algorithms for MG-SS in sampling positive-truncated Gaussian, i.e. U(z) =
22,2 >0,fora=0.51,2

Algorithm 4: Analytical MG-SS for half-Gaussian, a = 0.5

Input: Total sample size S
Output: Sample results
Initialization: Choose initial sample point x
for t = 1toS do do
Sample p; ~ N (0,1/v/2), find H, = z7 + p?
Sample 7 ~Uniform(0, 7)
Sample x;, 1 = abs ( H, cos(T))
end for

For a = 1, this is standard slice sampler.
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Algorithm 5: Analytical MG-SS for half-Gaussian, a = 1

Input: Total sample size S
Output: Sample results
Initialization: Choose initial sample point x(
for ¢t = 1toS do do
Sample p; ~ Gamma(1,1), find H; = z7 + p;
Sample 7 ~Uniform(0, 2+/H;)

Sample x4 = (7 —

end

for

V)

For a = 2, we solve a cubic function to estimate X, the resulting procedure is:

Algorithm 6: Analytical MG-SS for half-Gaussian, a = 2

Input: Total sample size S
Output: Sample results
Initialization: Choose initial sample point z(
for t = 1toS do do
Sample K; ~ Gamma(2, 1), find H; = 2? + K;
Sample 7 ~Uniform(0, 1)

Compute C = (2\/7(7 -1)+1- 27) Htl/2

Sample x;11 = abs (_1+T\/§ic _ 1—27\0/516)

end

for

Table 3: 1D exponential distribution. “AR” denotes acceptance rate. SS denote analytical slice

sampler.
Th. p,(1) Th. ESS SS p,(1) SSESS HMC p,(1) HMCESS HMC AR HMC time(s)
a=0.5 0.67 6,000 0.6620 6,204 0.6711 6,069 0.99 30
a=1 0.50 10,000 0.4868 10,227 0.5218 9,773 0.99 32
a=2 0.33 15,000 0.3265 15,547 0.3777 14,028 0.98 31
a=3 0.25 18,000 0.2494 17,507 0.2741 17,488 0.95 31
a=4 0.20 20,000 0.2108 19,229 0.2555 17,775 0.92 30
Table 4: 1D positive-truncated Gaussian. “AR” denotes acceptance rate. SS denote analytical slice
sampler.
Th. p,(1) Th. ESS SS p,(1) SSESS HMC p,(1) HMCESS HMC AR HMC time(s)
a=0.5 0.4787 10,576 0.4736 10,705 0.4802 10,510 0.99 42
a=1 0.3120 15,731 0.3040 15,457 0.3061 15,595 0.99 41
a=2 0.1830 20,718 0.1770 21,468 0.1937 20,498 0.99 43
a=3 0.1293 23,132 - - 0.1665 21,303 0.96 65
a=4 0.0999 24,552 - - 0.1508 22,115 0.94 120
Table 5: MG-HMC results of Gamma distribution
r=2 Th p,(1) pg(1) ESS r=3 Th p,(1) pg(1) ESS
a=05 04600 03523 10457 a=0.5 0.3729  0.2182 15507
a=1 0.3023 0.3008 15248 a=1 0.2030  0.1979 18416
a=2 0.1891 0.1838 20979 a=2 0.1290  0.1223 23486
a=3 0.1372  0.1684 21703 a=3 0.0931 0.1572 22106
a=4 0.1077  0.2430 19062 a=4 0.0728 0.2116 19541
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I Complimentary experimental results

I.1 Simulation results for 1D toy cases

The 1D simulation results are summarized in Table 3(Exp) ,Table 4(half-Gaussian) and Ta-
ble 5(Gamma).

The comparison of p, (1) is provided in Figure 11. The skewness for Exp(#), Gamma(2, ), N (0, 9)
and Gamma(3, #) are {2,1.41,0.99,1.15}, respectively. We observed that a large value of shape
parameter of Gamma distribution would lead to a lower p, (1), as « fixed. Informally, this seems
suggest that the skewness of the target distribution would influence the behavior of MG samplers. A
more skewed distribution tends to have higher autocorrelation p,.(h), and lower ESS.

We compare the empirical p, (1) and ESS of the analytic MG-SS and MG-HMC with their theoretical
values of each cases in Figure 10. In the Gamma distribution case, analytic derivations of the
autocorrelations and ESS are difficult, thus we resort to a numerical approach to compute p,.(1) and
ESS.

In principle, as a becomes larger, it would be desirable to choose a smaller € to compensate for
the numerical hardness. Empirically, the choice of m and € is dependent. A small value of m
would compensate the demand for choosing a small step-size to certain extent. However, optimal
performances were achieved by tuning both of them. Presumably, m will influence the relative scale
of the contour along z-axis and p-axis, thus tuning m will influence the general shape of the contour,
which may be beneficial in some cases. For the exponential and positive-truncated Gaussian cases, as
a becomes larger, the autocorrelation decreases from 1 to a small value close to zero, meanwhile the
ESS increases to approach the total sample size. However, the acceptance rates also decrease.

The results for analytic MG-SS match well with the theoretical results, however MG-HMC seems to
suffer from practical difficulties when a is large, evidenced by results gradually deviating from the
theoretical values. This issue is more prominent in the Gamma case, where the autocorrelation first
decreases then becomes larger.
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Figure 10: Theoretical and empirical p, (1) and ESS of exponential distribution (a,b) and Ay (c,d).
pz(1) for Gamma distribution with parameters r = 2 (e) and r = 3 (f)

Table 6: BLR setup (dimensionality of each dataset is indicated in parenthesis)

Dataset(dim) Australian(15)  German(25) Heart(14) Pima(8) Ripley(7) Cavaran (87)

€ 0.1 0.05 0.14 0.1 0.14 0.03

m whena = 0.5 10 10 10 10 10 10
m whena =1 2 2 2 2 2 2
m when a = 2 1 1 1 1 1 1
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Figure 11: Comparison of p, (1) for 4 simulated univariate cases

Table 7: Experiment setups for 1D simulated study

Exponential m € AR Gaussian(+) m € AR
a=0.5 1 0.05 0.991 a=0.5 1 0.05 0.996
a=1 1 0.05 0.982 a=1 1 0.1 0.981
a=2 0.15 0.05 0.980 a=2 0.15 5% 1072  0.983
a=3 0.02 1x1073% 094 a=3 0.02 5x107%  0.962
a=414 3x107% 5x107% 0.90 a=4 3x107% 25x%x1078 0.946
Gamma, r = 2 m € AR Gamma, r = 3 m € AR
a=05 1 0.05 0.986 a=05 1 0.05 0.986
a=1 1 0.1 0.982 a=1 1 0.05 0.983
a=2 0.15 5x 1073 0.965 a=2 0.15 0.01 0.972
a=3 0.02 2.5%x 1075 0.902 a=3 0.02 1x107® 0.885
a=14 3x 1073 2.5%x10°% 0.783 a=4 3x107% 25%x10°% 0.766

Table 8: Effective sample size of MG-HMC for 1D and 2D bimodal distribution. “AR” denotes
acceptance rates.

D ESS  p.(1) AR 2D ESS  p.(1) AR
a=05 5175 060 098 a=05 4691 067 096
a=1 10157 043 097 a=1 16349 060 0.87
a=2 24298 0.1 092 a=2 18007 053 0.78

Table 9: Comparison between MG-HMC o = 1 with standard slice sampling in 1D unimodal toy
cases

MG-HMC(a = 1) Exponential half-Gaussian Gamma(r = 2) Gamma(r = 3)

pz(1) 0.5218 0.3061 0.3008 0.1979
ESS 9,773 15,595 15,248 18416
Standard SS Exponential  half-Gaussian Gamma(r = 2) Gamma(r = 3)
pz(1) 0.5198 0.3039 0.3011 0.1954
ESS 9,622 16,051 15,092 18874

Table 10: Comparison between MG-HMC a = 1 with standard slice sampling in 1D and 2D bimodal
toy cases

MG-HMC(a = 1) 1D 2D Standard SS 1D 2D

pz(1) 043 0.60 (1) 0.056  0.697
ESS 10157 16349 ESS 27469 9566

1.2 Comparison between MG-HMC a = 1 with standard SS

1D unimodal toy cases To validate that when a = 1, the resulting sampler can be understood as
standard slice sampling, we also compared with standard slice sampling using doubling and shrinking
scheme [4]. The resulting ESS and p(1) is almost identical to analytical MG-SS and MG-HMC with
a = 1. The results are reported in Table 9.
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Table 11: Comparison between MG-HMC a = 1 with standard slice sampling in BLR and ICA
experiments

Min ESS A G H P R C ICA
MG-HMC(a = 1) 4308 4353 4591 4664 4226 36 3029
Standard SS 8.1 9.7 5.7 5.2 37 429 3.29

Bimodal 1D and 2D cases We also applied standard slice sampler with dimensional-wise doubling
and shrinking scheme [4] for these bimodal tasks. In 1D case, the standard slice sampler yields ESS
close to full sample size, while in 2D cases, the resulting ESS is 9533. This is reasonable because
when sampling from these bimodal symmetric distribution, in theory, analytical MG-SS gives full
ESS. However the slice sampler is usually less efficient when dealing with more than one dimension.
We note that there are more sophisticated methods for performing slice sampling in multidimensional
[11], however we leave the comparison for future investigation. The results are reported in Table 10.

BLR and ICA We reported the result for standard slice sampler [4] in Table 11. In general, standard
slice sampler with adaptive search fails to achieve a comparable results with other compared methods
when applying to multi-dimensional scenarios.

1.3 100 dimensional multivariate Gaussian

We assessed the performance of MG-HMC for sam-
pling 100 dimensional Gaussian distribution. The tar-

get Gaussian distribution has zero-mean and diago- " - —— MG-HMC 2=05
nal covariance matrix, where the diagonal elements 2 40 5 —~MG-HMC a=1
are uniformly drawn from [0, 10]. We collected 5000 i 4 MG-HMC a=2
MC samples after applying 2500 burn-in rounds. We < 30 2
compared the efficiency and accuracy of MG-HMC £
with ¢ = {0.5,1,2}. For each scheme, we use 5 g20 °
different leapfrog step-sizes e;, t = {1---5}, where w g\*ﬂgﬁ:&

2

€r+1 = 0.8€, so as to make the acceptance rates ranges
from 0.4 to 0.9. MG-HMC with a = 1 achieved highest
median effective sample size, as well as lowest mean

square error between empirically estimated parameters Figure 12: Scatter plot of mean squared er-
and truth (Figure 12). The maximum acceptance rates o, of estimated covariance and median ESS

for a = {0'53 1,2} is {0;987 0.96,0.63}, respectively. o simulated 100D Gaussian distribution.
MG-HMC with a = 2 failed to outcompete other tWo  Number labels denote the stepsize index.
tested schemes, probably due to the increasing numer-

ical hardness.

2000 3000 4000 5000
median ESS

J Experimental setup

1D toy synthetic problems we use a random integration time (leap-frog steps) uniformly drawn
from (20, 180), which has better convergence guarantee as suggested by [16]. Step sizes and m are
selected such that the acceptance rates fall within [0.6, 0.9], as suggested by [33]. The parameters
for MG-HMC in our simulation study is selected by grid search. Specifically, we tried stepsize € €
(0.05,0.025,1 % 1072,--. ,10~®), and mass parameter m € 2,1,0.5,0.25,0.15,0.05,0.02, 0.003.
For univariate distributions the optimal setup is provided in the Table 7.

Simulated bimodal experiments Each leap-frog update has (50 — [,50 + 1), = 20 steps, the
step-size is set as e = 0.05. The mass parameter for 1D case is chosen to be m = {5,1.2,0.4} for
a = {0.5, 1, 2}, respectively. For 2D case, the mass matrix is obtained by a mass parameter m times
the identity matrix, where m = {1,0.1,0.35} for a = {0.5,1,2}.

Bayesian logistic regression We follow the setup in [5] and [6] for BLR experiment. For data
X € R4V response variable t € {0,1}" and target parameters 3 € RY, if we impose a Gaussian
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Table 12: The avg AUROC for each method. Dimensionality of each dataset is indicated in parenthesis
after the name of each dataset.

Dataset (D) Australian (15) German (25) Heart (14) Pima (8) Ripley (7) Cavaran (87)

a=0.5 0.92 0.78 0.92 0.90 0.89 0.82
a=1 0.93 0.79 0.93 0.88 0.86 0.84
a=2 0.92 0.79 0.96 0.94 0.87 0.69

prior N'(0, aI) (where o > 0) on 3, the log posterior is given by [5],

N

L(B)=B"Xt - log(l+exp(87X})) -

n=1

p'B
2¢

We collect 5000 MC samples, with 1000 burn-in samples. For each dataset, we use a random
integration time (leap-frog steps) uniformly drawn from (20, 180), which has better convergence
guarantee as suggested by [16]. Step sizes and m are selected such that the acceptance rates fall
within [0.6, 0.9], as suggested by [33]. The stepsize and mass parameter varies from dataset to dataset
(Table 6). To deal with numerical problems, in Table 6, for a = 1 we use reflection, for a = 2 we use
softened kinetics. The softening parameter c is set as [0.3,0.2,0.2,0.2,0.3,0.2] for the 6 datasets,
respectively.

The average AUROC based on 10 folds cross-validation for each method is reported in Table 12

Independent component analysis For data X € R4*" and target parameters W € R%*?, the joint
likelihood is given by [34, 6],

N d

p(X, W) = [det(W)|N T] [ [ ps(w] =) [[V (Wi 0,0)

i=1j=1 k,l

In our experiments, we set the variance of the Gaussian prior to 100. The pj(ija:i) =
{4cosh?(1/2y;;)} 1, where y; = Wx; [6, 35].

We collect 5000 MC samples, with 1000 burn-in samples. The setups are provided in (Table 13). The
number of leap-frog steps are uniformly drawn from (20, 180). The computational time is almost
identical, (525, 517,523) seconds for a = (0.5, 1, 2), respectively.

Table 13: ICA setup
ICA m € AR
a=05 2 15x10"° 0.986
a=1 17 5x10° 0973
a=2 05 1x107°% 0772
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