
Generating Text via Adversarial Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

Generative Adversarial Networks (GANs) have achieved great success in generating1

realistic synthetic real-valued data. However, the discrete output of language model2

hinders the application of gradient-based GANs. In this paper we propose a generic3

framework employing Long short-term Memory (LSTM) and convolutional neural4

network (CNN) for adversarial training to generate realistic text. Instead of using5

standard objective of GAN, we match the feature distribution when training the6

generator. In addition, we use various techniques to pre-train the model and handle7

discrete intermediate variables. We demonstrate that our model can generate8

realistic sentence using adversarial training.9

1 Introduction10

Learning sentence representations is central to many natural language applications. The aim of a11

model for such task is to learn fixed-length feature vectors that encode the semantic and syntactic12

properties of sentences. One popular approach to learn a sentence model is by encoder-decoder13

framework via recurrent neural network (RNN) [1]. Recently, several approaches has been proposed.14

The skip-thought model of [2] describes an encoder-decoder model to reconstruct the surrounding15

sentences of an input sentence, where both the encoder and decoder are modeled as RNN. The16

sequence autoencoder of [3] is a simple variant of [2], in which the decoder is used to reconstruct the17

input sentence itself.18

These types of models enjoyed great success in many aspects of language modeling tasks, including19

sentence classification and word prediction. However, autoencoder-based methods may fail when20

generating realistic sentences from arbitrary latent representations [4]. The reason behind this is that21

when mapping sentences to their hidden representations using an autoencoder, the representations of22

these sentences may often occupy a small region in the hidden space. Thereby, most of regions in23

the hidden space do not necessarily maps to a realistic sentence. Consequently, using a randomly24

generated hidden representation from a prior distribution would usually leads to implausible sentences.25

[4] attempt to use a variational auto-encoding framework to ameliorate this problem, however in26

principle the posterior of the hidden variables would not cover the hidden space, rendering difficulties27

to randomly produce sentences.28

Another underlying challenge of generating realistic text relates to the nature of RNN. Suppose we29

attempt to generate sentences from certain latent codes, the error will accumulate exponentially with30

the length of the sentence. The first several words can be relatively reasonable, however the quality31

of sentence deteriorates quickly. In addition, the lengths of sentences generated from random latent32

representations could be difficult to control.33

In this paper we propose a framework to generate realistic sentences with adversarial training scheme.34

We adopted LSTM as generator and CNN as discriminator, and empirically evaluated various model35

training techniques. Due to the nature of adversarial training, the generated text is discriminated with36

the real text, thus the training is from a holistic perspective, rendering generated sentences to maintain37

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Z H

s̃̃s
LSTM

G

s

real/
fake

D

CNN

hLhLZ h1h1 …

…y1y1

LSTM

G

yLyL

Figure 1: Left: Illustration of the textGAN model. The discriminator is a CNN, the sentence decoder is an
LSTM. Right: the structure of LSTM model

high quality from the start to the end. As a related work, [5] proposed a sentence-level log-linear38

bag-of-words (BoW) model, where a BoW representation of an input sentence is used to predict39

adjacent sentences that are also represented as BoW. CNNs have recently achieved excellent results40

in various supervised natural language applications [6, 7, 8]. However, CNN-based unsupervised41

sentence modeling has previously not been explored.42

We highlight that our model can: (i) learn a continous hidden representation space to generate43

realistic text; (ii) generating high quality sentence in a holistic manner; (iii) we propose several44

training techniques for training such a model; (iv) be potentially applied to unsupervised disentangling45

learning and transferring literary styles.46

2 Model description47

2.1 TextGAN48

Assume we are given a corpus S = {s1, · · · , sn}, where n is the total number of sentense. Let wt49

denote the t-th word in sentences s. Each word wt is embedded into a k-dimensional word vector50

xt = We[w
t], where We ∈ Rk×V is a word embedding matrix (to be learned), V is the vocabulary51

size, and notation [v] denotes the index for the v-th column of a matrix. Next we describe the model52

in three parts: CNN discriminator, LSTM generator and training strategies.53

CNN discriminator The CNN architecture in [7, 9] is used for sentence encoding, which con-54

sists of a convolution layer and a max-pooling operation over the entire sentence for each feature55

map. A sentence of length T (padded where necessary) is represented as a matrix X ∈ Rk×T , by56

concatenating its word embeddings as columns, i.e., the t-th column of X is xt.57

A convolution operation involves a filter Wc ∈ Rk×h, applied to a window of h words to produce58

a new feature. According to [9], we can induce one feature map c = f(X ∗Wc + b) ∈ RT−h+1,59

where f(·) is a nonlinear activation function such as the hyperbolic tangent used in our experiments,60

b ∈ RT−h+1 is a bias vector, and ∗ denotes the convolutional operator. Convolving the same filter61

with the h-gram at every position in the sentence allows the features to be extracted independently of62

their position in the sentence. We then apply a max-over-time pooling operation [9] to the feature63

map and take its maximum value, i.e., ĉ = max{c}, as the feature corresponding to this particular64

filter. This pooling scheme tries to capture the most important feature, i.e., the one with the highest65

value, for each feature map, effectively filtering out less informative compositions of words. Further,66

this pooling scheme also guarantees that the extracted features are independent of the length of the67

input sentence.68

The above process describes how one feature is extracted from one filter. In practice, the model uses69

multiple filters with varying window sizes. Each filter can be considered as a linguistic feature detector70

that learns to recognize a specific class of n-grams (or h-grams, in the above notation). Assume we71

have m window sizes, and for each window size, we use d filters; then we obtain a md-dimensional72

vector f to represent a sentence. Above this md-dimensional vector feature layer, we use a softmax73

layer to map the input sentence to an output D(X) ∈ [0, 1], represents the probability of X is from74

the data distribution, rather than from adversarial generator.75

There exist other CNN architectures in the literature [6, 8, 10]. We adopt the CNN model in [7, 9]76

due to its simplicity and excellent performance on classification. Empirically, we found that it can77

extract high-quality sentence representations in our models.78

2

LSTM generator We now describe the LSTM decoder that translates a latent vector z into the79

synthetic sentence s̃. The probability of a length-T sentence s̃ given the encoded feature vector z is80

defined as81

p(s̃|z) = p(w1|z)
T∏

t=2

p(wt|w<t, z) (1)

Specifically, we generate the first word w1 from z, with p(w1|z) = argmax(Vh1), where h1 =82

tanh(Cz). Bias terms are omitted for simplicity. All other words in the sentence are then sequentially83

generated using the RNN, until the end-sentence symbol is generated. Each conditional p(wt|w<t, z),84

where < t = {1, . . . , t−1}, is specified as argmax(Vht), where ht, the hidden units, are recursively85

updated through ht = H(yt−1,ht−1, z). The LSTM input yt−1 for t-th step is the embedding vector86

of the previous word that maximize the wt−187

yt−1 = We[w
t−1]. (2)

V is a weight matrix used for computing a distribution over words. The synthetic sentence is obtained88

by s = [argmax(w1), · · · , argmax(wL)].89

The transition functionH(·) is implemented with an LSTM [1]. Each LSTM unit has a cell containing90

a state ct at time t. Reading or writing the memory unit is controlled through sigmoid gates, namely,91

input gate it, forget gate ft, and output gate ot. The hidden units ht are updated as follows:92

it = σ(Wiyt−1 + Uiht−1 + Ciz) ft = σ(Wfyt−1 + Ufht−1 + Cfz) (3)
ot = σ(Woyt−1 + Uoht−1 + Coz) c̃t = tanh(Wcyt−1 + Ucht−1 + Ccz) (4)
ct = ft � ct−1 + it � c̃t ht = ot � tanh(ct) (5)

where σ(·) denotes the logistic sigmoid function, and� represents the element-wise multiply operator93

(Hadamard product). W{i,f,o,c},U{i,f,o,c}, C{i,f,o,c}, V and C are the set of parameters. Note that94

z is used as an explicit input at each time step of the LSTM to guide the generation of s̃.95

Training techniques Given the sentence corpus S, instead of directly minimizing the objective96

function from standard GAN [11], we adopted an approach similar to feature matching [12]. The97

iterative optimization schemes consists of two steps:98

minimizing: LD = −Es∼S logD(s)− Ez∼pz(z) log[1−D(G(z))] (6)

minimizing: LG = tr(Σ−1s Σr + Σ−1r Σs) + (µs − µr)
T (Σ−1s + Σ−1r)(µs − µr) (7)

where Σs,Σr represents the covariance matrices of real and synthetic sentence feature vector fs,fr,99

respectively. µs,µr denote the mean vector of fs,fr, respectively. Σs,Σr,µs and µr are empirically100

estimated on minibatch. By setting Σs = Σr = I, this reduces to the feature matching technique101

from [12]. Note that this second loss LG is the symmetric KL divergence between two multivariate102

Gaussian distribution N (µr,Σr) and N (µs,Σs). Instead of capturing the first moment similarity,103

we cast more stringent criteria of matching the feature covariance of real and synthetic data. Despite104

the fact that the feature vector is not necessarily Gaussian distributed, empirically this loss (7) works105

well. Intuitively, this technique provides stronger signal for modifying the generator to make the106

synthetic data more realistic.107

To train the generator G which contains discrete variable, direct application of gradient estimation108

would fails. Score function based algorithms, such as REINFORCE [13] algorithm, obtains unbiased109

gradient estimation for discrete variables by using Monte Carlo estimation. However the variance of110

the gradient estimation could be large [14]. Here we consider a soft-argmax function when performing111

the inference as an approximation to the (2):112

yt−1 = Wesoftmax(Vht−1 � L). (8)

where � represents element-wise product. When L→∞, this approximation would becomes (2).113

The wt−1 is constrained to be either 0 or have an absolute value greater than 1.114

Previous literature [11, 12] has discussed the fundamental difficulty in training GAN model using115

gradient-based method. In general, gradient descent optimization scheme would fail to converges116

to the Nash equilibrium by moving along orbit trajectory among saddle points. Presumably, a117

good initialization would encourage convergence by reducing the orbit movement. To achieve good118

3

initialization, we initialize the LSTM parameters for the generator by pre-training a standard auto-119

encoder LSTM model. For the discriminator, we use a confusion training strategy. For each sentence120

in the corpus, we randomly swap two words to construct a tweaked counterpart sentence. The121

discriminator is pre-trained to classify the tweaked sentences from the true sentence. The swapping122

operation, rather than adding/deleting is used because we attempt to train the CNN discriminator to123

learn the sentence structure feature, rather than absence/presence of certain words (words presence124

feature). This strategy helps avoid the generator to produce repeated "realistic" words that rewards125

the words presence feature to achieve a higher score of being classified as from real data.126

3 Experiments127

Our model is trained using a combination of two datasets: 1). BookCorpus dataset [15], which128

consists of 70 million sentences from over 7000 books; 2). ArXiv dataset, which consists of 5 million129

sentences from various subjects, scrawled from arXiv website. The purpose of including two different130

corpus is to investigate whether the model can generate sentences that integrates both scientific131

writing style and vocabulary with informal writing style and vocabulary. We randomly choose 1132

million sentences from BookCorpus and 1 million sentences from arXiv dataset to construct our133

training dataset.134

We train the generator and discriminator iteratively. Given that the LSTM generator typically135

involves more parameters and is more difficult to train than the CNN discriminator, we perform one136

optimization step for the discriminator for every 5 steps for the generator. Both of the generator and137

discriminator are per-trained with the strategy described in Section 2.138

For the CNN encoder, we employ filter windows (h) of sizes {3,4,5} with 300 feature maps each,139

hence each sentence is represented as a 900-dimensional vector. For both, the LSTM sentence decoder140

and paragraph generator, we use one hidden layer of 500 units.141

Gradients are clipped if the norm of the parameter vector exceeds 5 [16]. The Adam algorithm [17]142

with learning rate 1 × 10−4 for both discriminator and generator is utilized for optimization. We143

use mini-batches of size 128. All experiments are implemented in Theano [18], using a NVIDIA144

GeForce GTX TITAN X GPU with 12GB memory. The model was trained for roughly one week.145

We first examine how well the generator can produce similar feature distributions to mimic the146

real data. We calculate the empirical expectation and covariance of 900 CNN top layer features147

over a minibatch of 128 real sentences and 128 synthetic sentences. As shown in Figure 2, the148

expectation of these 900 features from synthetic sentences matches well with the feature expectation149

from the real sentences. The covariances of 900 features against the first feature (i.e., Cov(fi, f1))150

also demonstrate consistency between the real sentences and synthetic sentences.151

-1 -0.5 0 0.5 1
Real sentences

-1

-0.5

0

0.5

1

Sy
nt

he
tic

 s
en

te
nc

e

Expectation of 900 features

-0.5 -0.3 -0.1 0.1 0.3
Real sentences

-0.5

-0.3

-0.1

0.1

0.3

Sy
nt

he
tic

 s
en

te
nc

es

Covariance of 900 features

Figure 2: Left: the scatter plot of the expectations of features from real data against the expectations
of features from synthetic data. Right: the scatter plot of the covariances of features (v.s. 1st feature,
Cov(fi, f1)) from real data against the covariances of features from synthetic data.

4

Table 1: Intermediate sentences produced from linear transition between two random points in the
latent space. Each sentence is generated from a latent point on a linear grid with equidistance

A we show the efficacy of our new solvers , making it up to identify the optimal random vector .
- we made the price of such new solvers and reduce its time series pairs .
- we realized and minimize the best of such tasks in terms of multidimensional high dimensional kernels .
- we realized and minimize the best of such tasks are invariant on such a sparse linear program .
- we realized and minimize the price of <UNK> ’s plans , by drawing up a constant .
- we realized the price used to pay , whatever they are .
- i realized mrs. <UNK> was surprised that most of them got safe .
B dylan realized the distance of the walls to them .

We further empirically evaluate whether the latent variable space can densely encode sentences with152

appropriate gramma structure, and to visualize the transition from sentence to sentence. We construct153

a linear path between two randomly selected points in the latent space, and generate the intermediate154

sentences along the linear trajectory. The results are presented in Table 1. Generally the produced155

sentence is grammatically correct and semantically reasonable. The transition demonstrate smooth-156

ness and interpretability, however the wording choices and sentence structure showed dramatical157

changes in some regions in the latent space. Presumably the local “transition smoothness” can varies158

from region to region.159

Note that the generated text demonstrates some entangling of both scientific style of writing and160

informal style of writing, because the training is on the combination of two corpus. The generator161

can conjure novel sentence by leveraging the grammatical rule and property of words.162

We observed that the discriminator can still sufficiently distinguish the synthetic sentences from163

the real ones (the probability to predict synthetic data as real is around 0.08), even if the synthetic164

sentences seems to perserve reasonable grammatical structure and use proper wording. Probably the165

CNN is able to sophisticatedly characterize the semantic meaning and differentiate sentences in a166

holistic perspective, while the generator may stuck into a sweet point where any slight modification167

would render a higher loss (7) for the generator.168

4 Conclusion169

We presented a text generation model via adversarial training and discussed several techniques for170

training such a model. We demonstrate that the proposed model can produce realistic sentences by171

mimicking the input real sentences, and the learned latent representation space can continuously172

encode plausible sentences.173

In future work, we attempt to disentangle the latent representations for different writing style in174

an unsupervised manner. This would enable a smooth lexical and grammatical transition between175

different writing styles. The model also will be fine-tuned in order to achieve more compelling results,176

such as improved sentences with better semantical interpretation. Furthermore, a more comprehensive177

quantitative comparison will be performed.178

5

References179

[1] S. Hochreiter and J. Schmidhuber. Long short-term memory. In Neural computation, 1997.180

[2] R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-thought vectors.181

In NIPS, 2015.182

[3] A. Dai and Q. Le. Semi-supervised sequence learning. In NIPS, 2015.183

[4] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.184

Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.185

[5] F. Hill, K. Cho, and A. Korhonen. Learning distributed representations of sentences from unlabelled data.186

In NAACL, 2016.187

[6] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling sentences.188

In ACL, 2014.189

[7] Y. Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.190

[8] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural191

language sentences. In NIPS, 2014.192

[9] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language processing193

(almost) from scratch. In JMLR, 2011.194

[10] R. Johnson and T. Zhang. Effective use of word order for text categorization with convolutional neural195

networks. In NAACL HLT, 2015.196

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron197

Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing198

Systems, pages 2672–2680, 2014.199

[12] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved200

techniques for training gans. arXiv preprint arXiv:1606.03498, 2016.201

[13] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement202

learning. Machine learning, 8(3-4):229–256, 1992.203

[14] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of204

discrete random variables. arXiv preprint arXiv:1611.00712, 2016.205

[15] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning books and206

movies: Towards story-like visual explanations by watching movies and reading books. In ICCV, 2015.207

[16] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.208

[17] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.209

[18] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley,210

and Y. Bengio. Theano: new features and speed improvements. arXiv:1211.5590, 2012.211

6

	Introduction
	Model description
	TextGAN

	Experiments
	Conclusion

