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Abstract

We propose a Bayesian method to discover entangled directed graphs from scratch
data. This method can be applied to gene regulation study and other applications.
We show that an EM approach can recover a fixed number of components. Using
a Dirichlet process mixture model, it is also possible to discover infinite mixture
of causality relationships.

1 Aim

Learning regulatory network structure is central to the holistic view of gene regulation. Typically,
score-based search algorithms is commonly employed for discovering structure represented as
directed acyclic graphs (DAGs) from gene expression data[3]. However, the experimental data
may be collected from a variety of cells or conditions, thus may come from ’multiple’ network.
Inferring sub-network structures can help us understand the subtle differential regulations among
cell population at higher resolution in an unsupervised manner. It should be noted that even if
the underlying true network is shared by all cells or conditions, the appeared marginal network of
several selected genes can still be different. Attempts have been made to learn finite mixture of
DAGs[6]. However, the method have not been introduced to gene network discovery, and is limited
by a predifined components size.

The aim of this study is to reconstruct network from heterogeneous data. In particular, we extend
from finite mixture of networks to infinite mixture using Dirichlet process. A block gibbs sampler
approach employed for inference. We also discussed the identifiablity of learning a mixture of
networks.

2 Method

2.1 Learning structure from homogeneous data

We first describe the inference approach employed to find the posterior of structures from homo-
geneous data. In regulatory network discovery problem, a node in the graph represent a gene or
transcription factor. The directed edge between nodes denote the causal relationship between the
nodes. The causal relationship can be activation, suppression or non-linear regulation.

For a network G parameterized by ⇥

G, the marginal distribution P (D|G) is given by

P (D|G) =

Z
P (D|⇥G

, G)P (⇥

G|G)d⇥

G
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in G. In Gaussian case, a BGe prior [1] for the
parameters ✓ let the marginal to be factorized.
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Where N denotes the number of random variables, D is the total sample number. ✓

i

includes all
relevant parameters in ⇥

G for predicting x

i

given pa(x

i

). The conjugacy of BGe prior (Normal-
Wishart) let the integral to have a close form, as the function of sufficient statistics from data. Alter-
natively, BIC can be employed for computational concerns.

If we further assume uniform prior knowledge in structure space, given by

P (G|D) / P (G)P (D|G)

/ P (D|G)

The posterior can be sampled by Metropolis-Hasting approach, where we define a move set (add,
delete and reverse) and conduct MCMC sampling.

2.2 Learning mixture of networks

A finite mixture of DAG (mDAG) of K components is written as[6]

P (D|mDAG) =

X

k

⇡

k

P (D|G
k

)

Where D is the generated data, ⇡
k

is the mixture weight (
P

k

⇡

k

= 1,⇡

k

> 0). A practical approach
for mixture model is through EM algorithm. Starting with certain initial setting, we iteratively
assign data samples to clusters and find the structure within each cluster. A hard EM approach will
assign data sample to a single cluster, while a standard EM algorithm will evaluate the probability
of assigning to each cluster, and use expected sufficient statistics (sufficient statistics weighted by
cluster assignment probability) to update.

Algorithm 1 EM algorithm for mDAGs
Initiate the cluster assignment Z
Until convergence
for c = 1 : Cluster size do

Sample structures within cluster
c

Estimate cluster probability ⇡

c

end for

for d = 1 : Sample size do

for c = 1 : Cluster size do

Calculate expected sufficient statistics for cluster c
for g = 1 : Sampled graph size do

Find assignment probability to this graph g

end for

Find assignment probability to this cluster c
end for

end for

For hard EM, the assignment probability of data points Ds to cluster k given a graph G is given by,

P (D

s|D,G) =

Z
P (D

s|⇥G

, G)P (⇥
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)
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Where the posterior local distribution of ⇥G is still in the same family. SS
k

are the expected suffi-
cient statistics computed from data assigned to cluster k. The cluster assignment probability can be
find via Bayesian rule.

P (C

s|Ds

, D) / ⇡

c

X

G2 c

P (D

s|Dc

, G)P (G)

Where
c

are the structure set of cluster c sampled from M-step. ⇡
c

is the proportion probability of
cluster c. In the derivation for standard EM, the sufficient statistics should be replaced by expected
sufficient statistics ESS

k

.

2.3 Infinite mixture

We further took infinite limit of the number of mixture components, which we denoted as imDAG
(infinite mixture of Directed Acyclic Graphs). The generative model of an imDAG is as follow
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Where BGe(↵) denotes the BGe metric parameterized by ↵. S denote the generative model of
network samples given the graph and corresponding parameters. We let x(j)

i

be the value of jth
variable in i th sample.
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Where NW denote Normal-Wishart distribution parameterized by �. Following Dirichlet process
mixture model[4], we marginalize over possible DAGs and parameters gives a collapsed Gibbs
sampler for this model.
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Where NW(⇥

G|x�i,k

, G,�) is the posterior distribution of LPDs (local probability distribution)
estimated from data in cluster k.

A more efficient sampling scheme for DP mixture model is by block sampling (Ishwaran & James,
2001). A Blocked Gibbs Sampler update z

i

2 {1 . . . N} by multinomial sampling
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Which is followed by updating stick-breaking weight and ⇥
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Where n

h

denote the number of samples assigned to cluster h. This method requires a predefined
number to upper bound the total cluster number. However, by choosing a relatively large number,
the approximation error is typically small.
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2.4 Identifiablity of mixture of DAGs

A mixture of DAGs is identifiable if the DAG components can be seperated. Unfortunately, a mixture
of DAGs with discrete categorical variables is not identifiable. A trivial example is a degenerate
DAG which have one single discrete categorical node. It can have arbitary numbers of possible
decomposition. Generally, if a mixture of DAGs can be perceived as generated from one single
DAG, it’s unidentifiable.

Proposition 2.1 (Identifiablity) A mixture of DAGs {G1,⇥G1 ,⇡1}, . . . , {GN
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}
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3 Simulation study

For synthetic data, we mixed three randomly generated DAGs, each of which have five variables.
The LPD parameters are sampled from uniform distributions. For each DAG, 50 data cases were
generated.

Starting from initial random guess, the both hard EM and standard EM can recover the right com-
ponents within 20 iteractions. The average acception ratio of Metropolis Hasting is 48.

Correct ratio Negative log-likelihood
EM 0.8214 2612

hard EM 0.8067 2890

Table 1: Performance on simulation data

Ground truth Learn a single DAG

Top sampled graphs

Graph posterior

Figure 1: Top DAGs identified from each component. Correct edges are colored red, reversally
correct edges are colored blue, indirectly correct edges are colored green

We use Gibbs sampling for find infinite components of DAGs from data. For computational con-
cerns, the sampler was only run for 30 iterations. The sampler seems to be quickly converged to the
right posterior, and the number of component is fluctuating around four.
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Figure 2: DP result. Left: MH accept ratio of structure sampling, middle: proportion of correct
label, right: number of components.

Figure 3: Number of items in each component after 30 iteractions

4 Real data analysis

We evaluated our methods on the DREAM5 challenge datasets. In particular, we examined a gene
expression dataset with 4511 genes under 805 chip experiments. Among all those experiments,
45 have certain gene(s) knocked out. All indirect connections from DREAM reported graph were
collapsed to be presented as direct link. Due to computational concerns, we only pick 10 genes for
evaluation.

After 20 iterations, two major components are identified. The top component seems to correspond
to the DREAM reported DAG, with several edges been falsely identified. The second component
resembles the top one, except for the fact that several edges are missing. One of the missing edge
(3 ! 1) may reflect the knock-out of gene 3 in 23 experiments.

5 Discussion

Causal inference is challenging especially in regulatory network recovery where data can come
from different conditions. In this paper we propose an approach to infer infinite number of network
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Figure 4: Identified DAGs from Real data. Left: DREAM reported graph, middle: top and second
top components identified from data. right: the porportion for each component. Correct edges are
colored red, reversally correct edges are colored blue, indirectly correct edges are colored green

mixtures from scratch observation data, with a full bayesian treatment. The unlimited nature of
non-parameteric approach enables finding network structure in an automatic manner, but also come
with a price. This nested MCMC approach involves MH sampling of graphs for collapsed sampling
hidden assignment for each data experiment, which has a fairly heavy computational complexity. To
alleviate this, one could either consider apply an approximate EM algorithm for DP mixture model,
or conduct group sampling.

The current implementation of this method is based on Gaussian linear local probabilistic model.
However, in real case the joint data distribution may often come from a model that is non-Gaussian
or non-linear. The regulation of certain gene may saturate with additional regulator comes in, in
which case it may be more appropriate to model the regulation effect as sigmoid function.
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