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1 Gibbs sampling procedures

1.1 GP-FA model

We denote i th q× q patch as X = {x1, . . . ,xN} ∈ RJ×N (J = q× q), D = {d1, . . . ,dM} ∈ RJ×M is dictionary,
zi = {zi1, . . . , ziM} ∈ {0, 1}M is the factor binary scores, indicating whether a dictionary is present in this patch.
wi = {wi1, . . . , wiM} ∈ RM are the real-valued weights complement the binary scores.

xi = D(wi � zi) + εi,

dm ∼ N (0, IJ)

wi ∼ N (0, σ2
wIM )

εi ∼ N (0, σ2
εIJ)

σ−2w ∼ Γ(c0, d0)

σ−2ε ∼ Γ(e0, f0)

We assign 2D grid Gaussian process prior over patches.

zim ∼ Bernoulli(σ(yim))

yim = fm(li)

fm(·) ∼ GP(bm,Km(·))
bm ∼ N (λm, σ

2
b )

λm ∼ N−(0, σ2
λ)

For yi, using polya-gamma data augmentation.

γim ∼ PG(1, yim + bm)

For clarity we omit dictionary index m. Denoting y(−i) , y\{yi},
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For b,
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For dictionary element djm, letting sim , wim × zim, we can obtain
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For zim,

p(zim|−) ∼ Bernoulli(p∗im/(1 + p∗im))
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1.2 GP-SBN-FA model

Here we provide the gibbs sampling scheme involving only one layer of sigmoid belief network. The multilayer
SBN can be easily derived following same strategy.

DenotingH = {h1, . . . ,hN} ∈ {0, 1}N×K1 , whereK1 is the number of nodes in hidden layer. V = (V 1, . . . ,V M ) ∈
R
K×K1 is the weight matrix. Using Pólya-gamma data augmentation, we can present the model as below
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The gibbs update for zim is given by,

p(zim|−) ∼ Bernoulli(p∗im/(1 + p∗im))
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For b(0), b(1).
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For him1 ,
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2 Kronecker method

Suppose our aim is to employ Kronecker method for fast inference of uK−1\i,\i, where u is a vector of size N − 1.

Algorithm 1 Preconditioned conjugate gradient for multiplicative GP inference

Input: Gram matrix for dimension up to S: K(1) . . .K(S), current patch index li = (l
(1)
i . . . l

(S)
i ) and an input

vector of size N − 1: u
Output: uK−1\i,\i, where K\i,\i is obtained by removing i th row and column from the Kronecker product

gram matrix K = K(1) ⊗ . . .⊗K(s).
Set conditioner matrix C = diag(c1 . . . cN ), where ci = λ−1/2, c\i = η; For numerical reason, we set η and λ
to be large number, such as 1010

Initialize x0, r0 = u, z0 = Cu and index k = 0
while rk > tolerance do
k = k + 1
if k == 1 then
p1 = z0

else

pk = zk−1 +
zT
k−1rk−1

zT
k−2rk−2

pk−1

end if
L = pTk
for s = 1 toS do do
L =reshape(L, size(K(s)),N/ size(K(s)))

L = (K(s)L)T

L = vec(L)
end for
Li = Li + λvi

Compute α =
zT
k−1rk−1

pT
k L

, xk = xk−1 + αpk, rk = rk−1 − αL, zk = Crk

end while
Return xk

Where reshape(·) and vec(·) represent reshaping a matrix and vectorize a matrix, respectively.

3 Interpolation results for 20% observed data

Here we provide the interpolation results for 20% observed data (Table 1), where GP-FA and GP-SBN-FA showed
better result than BPFA, while cannot outperform dHBP.

4 BM3D results for denoising task

Here we provide an comparison with BM3D [Danielyan et al.(2012)Danielyan, Katkovnik, and Egiazarian], which
represents the state-of-the-art algorithm for denoising tasks (Table 2).



PSNR(dB) C.man House Pepper Lena Barbara
BP(512) 24.11 30.12 25.92 31.00 24.80

dHBP(512) 24.43 32.23 27.06 32.00 29.51
GP-FA(256) 24.36 31.02 26.13 31.41 27.68

GP-SBN-FA(256) 24.49 30.93 26.62 31.39 27.49
PSNR(dB) Boats F.print Man Couple Hill

BP(512) 27.81 26.03 28.24 27.72 29.33
dHBP(512) 28.66 26.80 28.86 28.55 29.94

GP-FA(256) 27.95 26.82 28.64 27.89 29.43
GP-SBN-FA(256) 27.85 26.73 28.48 27.87 29.37

Table 1: Inpainting task (20% data observed). Parenthesis after methods indicates the number of dictionary
elements.

σ = 25
Method C.man House Pepper Lena Barbara
BM3D 29.45 32.86 30.16 32.08 30.72
GP-FA 28.70 32.22 29.65 31.42 29.11

GP-SBN-FA 28.99 32.23 29.78 31.51 29.18
Method Boats F.print Man Couple Hill
BM3D 29.91 27.7 29.62 29.72 29.85
GP-FA 29.49 27.55 29.27 29.04 29.49

GP-SBN-FA 29.56 27.54 29.23 29.15 29.52
σ = 50

Method C.man House Pepper Lena Barbara
BM3D 26.12 29.69 26.68 29.05 27.23
GP-FA 24.66 28.12 25.71 27.80 25.44

GP-SBN-FA 24.66 28.15 25.67 27.83 25.39
Method Boats F.print Man Couple Hill
BM3D 26.78 24.53 26.81 26.46 27.19
GP-FA 25.99 23.91 26.22 25.51 26.48

GP-SBN-FA 26.03 23.89 26.18 25.45 26.45

Table 2: Denoising comparison with BM3D for 2 noise levels σ = {25, 50}. Performance is measured as PSNR
in dB.

5 Hyper-parameters for dHBP

For all experiments, we set the hyper-parameters as default setting in dHBP. The kernel width is set as 5, radius
of spatial neighbor for consideration is set as 3. The hyper-parameters for Gamma prior is 10−6. c0 = 10, η0 =
0.5, c1 = 1, η = 10−3.

6 Supplements for depth restoration

6.1 Different patch extraction strategies

We compared the PSNR results of two approaches. One approach is to extract patches of 8∗8∗4 size, where each
patch consists pixels of all 4 channels. Our second approach is to extract patches of 8 ∗ 8 size, where each patch
only contains pixels of single channel. Since the patches of first approach only have location covariate, we put a
2-D Gaussian process prior. For the second approach, we put a 3-D Gaussian prior. We found that the second
approach significantly improved the PSNR for recovering both corrupted RGB image and depth information
(∼ 1dB improvement). Presumably, the first approach treat each dictionary element as a “bundle” of 4 channel-
specific dictionary elements (i.e. the size of dictionary element is 8 ∗ 8 ∗ 4, can be seen as 4 8 ∗ 8 channel specific
dictionary elements), which impose strong assumption to the model (channel specific dictionary elements must
occur at each location). While the second approach lend more flexibility to the dictionary element, to let each
channel freely choose channel specific dictionary elements to recruit. The dependency of the dictionary activation
is imposed by the GP across channels.



6.2 Binary activation pattern in depth restoration task

We adopt the second approach to jointly learn the dictionary elements from channel-specific patches. As shown
in Figure 1, the binary dictionary score shows high level of similarity among RGB channels. The dictionary
activation binaries in depth channel have relatively weaker correlation to RGB, compared with the correlation
within RGB channels. This motivate us to set θd greater than one.

Figure 1: From top-left to bottom-right: binary activation pattern of R,G,B,D channels

6.3 Depth restoration result for 30 images

We compared dHBP, BPFA and our method with 30 RGB images with depth information, the results for each
image is as below. Figure 2 shows the RGB channels recovery PSNR and Figure 3 shows the depth channel
restoration. In general, GP-FA performs best over these 30 datasets.

As a more detailed comparison with several other methods, we include the results from [Lu et al.(2014)Lu, Ren, and Liu].
The figures 4 are from their original paper.

6.4 Adding the channel covariance kernel leads to performance improvement

We conduct two experiments to demonstrate the effectiveness of RGB channel information, and the channel
covariance matrix in improving PSNR results. All methods used 64 dictionary elements and was run for 500 MC
iterations. As shown in Figure 5 and Figure 6, using depth information alone (GP-FA depth alone/ GP-SBN-FA
depth alone) for interpolation led to much lower performance than taking advantage of corresponding noisy RGB
image. Moreover, if the covariance kernel function Kc is removed from the K, i.e. only spatial correlation is
considered, the results is approximately 0.5 less than those capturing channel. This validate our belief that the
across channel information borrowing would potentially leads to better characterization of dictionary elements.

6.5 Inter-dictionary correlation

Here we show the inter-dictionary correlation of a gray-scale image (Barbara). As shown in Figure.7, we found
that the hidden nodes in SBN controls a “group” of dictionary elements, to simultaneously turn on (with positive
Vmm1

) or turn off (with negative Vmm1
). The activated (or deactivated) dictionary elements are co-captured by

one hidden node, thus display similarity between each other.
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Figure 2: Depth channel recovery comparison. Each line represents a method. The result is evaluated by PSNR
(dB)
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Figure 3: RGB channels recovery comparison. Each line represents a method. The result is evaluated by PSNR
(dB)



Figure 4: Results for depth restoration images. Methods from left to right: Lu. et al. Joint bilateral filter
(JBF), Nonlocal means filter (NLM), Structure-guided fusion (SGF), Spatio- temporal hole filling (SHF), Guided
inpainting and filtering (GIF)
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Figure 5: Depth channel recovery comparison. Each line represents a method. The result is evaluated by PSNR
(dB)
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Figure 6: Boxplot shows the difference of PSNR w.r.t. GP-FA



Figure 7: Inter-dictionary dependency captured by three different hidden nodes. Left 3 ∗ 3 grid shows the
dictionary elements with positive weight, i.e. activated by this hidden node. Right 3∗3 grid shows the dictionary
elements with negative weight, i.e. deactivated by this hidden node.
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