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Abstract

In dictionary learning for analysis of images,
spatial correlation from extracted patches
can be leveraged to improve characterization
power. We propose a Bayesian framework
for dictionary learning, where spatial loca-
tion dependencies are captured by impos-
ing a multiplicative Gaussian process prior
on the latent units representing binary acti-
vations. Data augmentation and Kronecker
methods allow for efficient Markov chain
Monte Carlo sampling. We further extend
our model with a sigmoid belief network,
linking Gaussian processes and high-level la-
tent binary units to capture inter-dictionary
dependencies, while yielding additional com-
putational savings. Applications to image
denoising, inpainting and depth-information
restoration demonstrate that the proposed
model outperforms traditional Bayesian dic-
tionary learning approaches.

1 INTRODUCTION

Learning overcomplete sparse latent representations
for signal restoration and characterization has recently
led to state-of-the-art results in tasks such as image
denoising, inpainting, super-resolution and compres-
sive sensing (Zhou et al., 2009; Yang et al., 2012). In
dictionary learning, signals are represented in a la-
tent factor space, where each signal is encoded as a
sparse linear combination of dictionary elements (fac-
tors). Traditional approaches learn sparse codes from
a fixed number of dictionary elements, while minimiz-
ing the reconstruction error subject to sparse regu-
larization (Aharon et al., 2006; Mairal et al., 2009a).
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However, the sparsity level and the dictionary size are
usually not known a priori. Non-parametric Bayesian
approaches have been successful at tackling these chal-
lenges (Zhou et al., 2009, 2012; Polatkan et al., 2015),
by employing methodologies like the Indian buffet pro-
cess (IBP) (Ghahramani and Griffiths, 2005). Such
Bayesian approaches also provide a principled way to
estimate uncertainty and typically yield excellent gen-
eralization ability.

Recent work has demonstrated that modeling images
as a collection of sub-regions or patches is important,
because leveraging local image structure is instrumen-
tal for representational quality (Mairal et al., 2009b;
Zhou et al., 2009). The key idea in this line of work
is that similar patches are likely to share dictionary
elements. Furthermore, dictionary learning can be
greatly improved by imposing that patches close in
space are likely to use the same or similar dictionary
elements (Zhou et al., 2011). Specifically, dependent
Hierarchical Beta Process (dHBP) (Zhou et al., 2011)
utilized a dependent IBP to capture spatial correla-
tions, via a 2-D smoothing function based on patch lo-
cations; the smoothing function attenuates as the dis-
tance between patches increases. Although their ap-
proach leads to dramatic performance improvements,
the smoothing function has to be specified parametri-
cally, and the posterior of their Bayesian formulation
is not locally conjugate, which makes inference chal-
lenging.

Gaussian Process (GP) priors (Rasmussen and
Williams, 2006) are a natural choice for capturing spa-
tial dependencies. They are appealing because one can
use them, in a principled non-parametric manner, to
estimate correlation as a function of relative spatial
location. However, despite great flexibility, GPs are
known to be computationally expensive; in fact, they
become prohibitively expensive as the number of ob-
servations grows, due to repeated matrix inversions.

In this paper, we propose a framework for dictio-
nary learning where patch-to-patch spatial dependen-
cies are modeled via GP priors linked to binary dic-
tionary element activations. To address the compu-
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tational challenges of GPs, we consider an efficient
Kronecker inference method, with multiplicative co-
variance functions (Gilboa et al., 2015). Furthermore,
we utilize deep Sigmoid Belief Networks (SBNs) to im-
pose correlation structure across dictionary elements,
which we demonstrate leads to performance improve-
ments in many cases. The GPs may be linked to the
binary units at the top layer of a deep SBN, and the
number of these top-layer units may be made small
relative to the number of dictionary elements. There-
fore, there is a substantial computational savings man-
ifested by placing the (small number of) GPs at the
top of an SBN, rather than placing GP for each of the
(large number of) dictionary elements.

The contributions from our framework are: (i) Gaus-
sian process priors that capture spatial dependen-
cies between patches in images; (ii) sigmoid belief
networks that capture dependencies between dictio-
nary elements; (iii) efficient inference due to Kro-
necker methods for GPs and a fully local conjugate
Bayesian formulation based on Pólya-gamma data-
augmentation; (iv) computational savings by reducing
the number of needed GPs, by linking them to the
top layer of the SBN; (v) results on traditional im-
age tasks and depth restoration, that demonstrate the
flexibility of our approach and highlight how learning
dependency structure yields superior performance.

Related Work Several studies have employed GPs
in tasks such as interpolation (Wachinger et al.,
2014a), super-resolution (super-pixel) (Wachinger
et al., 2014b; He and Siu, 2011) and denoising (Liu,
2007; Wang et al., 2014). These works are based on
the same key insight, that images composed of noisy
or corrupted patches can be used to produce clean im-
ages as output, by leveraging statistical correlations
between image patches. For this purpose, sophisti-
cated covariance functions were designed to character-
ize patch dependencies. Our work is complementary
to their work in that we use GPs for location depen-
dencies, not patch dependencies.

Other work has also explored GPs as priors for dictio-
nary elements. Xing et al. (2012) characterized multi-
channel hyper-spectral images, where each channel is
associated with a distinct wavelength. Their assump-
tion is that dictionary elements from different channels
are smooth as a function of wavelength, whereas we as-
sume that dictionary activation is a smooth function
of location.

Garrigues and Olshausen (2007) developed a method
close to ours; they proposed a sparse coding model
where spatial dependencies are imposed via pairwise
coupling using an Ising model. However, their model
requires a user-defined temperature parameter that

uniquely controls the strength of coupling.

2 BAYESIAN DICTIONARY
LEARNING

Assume observed data X = {x1, . . . ,xN} ∈ RJ×N ,
where xi represents data from one of N patches ex-
tracted from a single image. In Bayesian dictionary
learning, the goal is to learn dictionary elements,
D = {d1, . . . ,dM} ∈ RJ×M from data, X. The i-
th observations, xi, is represented as

xi = D(wi � zi) + εi , εi ∼ N (0, σ2
εIJ) ,

dm ∼ N (0, IJ) , wi ∼ N (0, σ2
wIM ) ,

(1)

where � denotes the element-wise (Hadamard) prod-
uct, and IJ is a J × J identity matrix. Vectors
wi = {wi1, . . . , wiM} ∈ RM and zi = {zi1, . . . , ziM} ∈
{0, 1}M represent weights and binary activations, re-
spectively. Specifically, zi, encodes the presence or ab-
sence of dictionary elements for the i-th sample. εi is
i.i.d. additive Gaussian noise. To avoid ambiguities in
the relative scaling of D and wi, dm is constrained to
have unit variance. Hyperpriors are placed on the vari-
ances of wi and εi, via inverse-Gamma distributions
on σ2

w and σ2
ε , which enables us to share dispersion

information across dictionary elements.

One possible approach to encourage sparsity in the
binary activations, zi, is to use a Bernoulli-beta spec-
ification (Zhou et al., 2009)

zim ∼ Bernoulli(πim) , πim ∼ Beta

(
η

M
, η

(
1− 1

M

))
, (2)

where η controls the sparsity of {zi}Ni=1. In practice,
πim is marginalized out during inference. Note that
the parameters of the beta distribution are set to
match a beta process formulation, i.e., its parameters
are scaled with M . It has been previously shown
that when M is large, (2) corresponds to an finite
approximation of the beta process (Zhou et al., 2009).

3 DICTIONARY LEARNING WITH
GAUSSIAN PROCESSES

Zhou et al. (2011) demonstrated that it is reasonable
to assume that patches located near each other are
likely to be represented in terms of the same or simi-
lar dictionary elements, and thus binary activations of
nearby patches are likely to be consistent with spatial
dependencies. We incorporate such prior belief into (1)
by means of a GP on a 2-D spatial field. Our approach
differs from that by Zhou et al. (2011), in that GPs al-
low estimation of binary activation dependencies (by



Manuscript under review by AISTATS 2016

connecting the GP output to a logistic link function).
We call our method GP-FA (Gaussian Process Factor
Analysis), for short. The construction for the m-th
binary activation, zim, in (2) becomes

zim ∼ Bernoulli(σ(yim)) , (3)

yim = fm(li) , fm(·) ∼ GP(bm, km(li, ·)) , (4)

bm ∼ N (λm, σ
2
b ) , λm ∼ N−(0, σ2

λ) , (5)

where σ(·) denotes the sigmoid function, yim is the
value of function fm(·) evaluated at the 2-D spatial

coordinates of the i-th patch, li = {l(1)i , l
(2)
i }. The

function fm(·) is drawn from a GP with constant mean
function, µm(·) = bm, and multiplicative covariance

function, km(li, ·), defined as km(li, ·) = k
(1)
m (l

(1)
i , ·) ⊗

k
(2)
m (l

(2)
i , ·).

For the mean, bm, we specify a Gaussian prior with
mean and variance, λm and σ2

b , respectively. To en-
courage sparsity in the activations, zim, we bias func-
tion instances, yim, towards negative values using a
zero-mean Gaussian distribution truncated above zero
(i.e., negative support) with variance σ2

λ. Since this
prior is shared by all factors, it encourages sparsity
globally. Further, the hierarchy in (5) is convenient
from a practical stand point, because it yields local
conjugacy.

For the covariance function, km(·, ·), in our implemen-
tation we consider the widely used squared exponential
(SE) function. Specifically, the covariance function for
axis s = {1, 2}, is defined as

k(s)m (l(s), l(s
′); Θm) = (σ2

f )m exp{−(l(s) − l(s
′))2/θm} ,

where Θm = {(σ2
f )m, θm} is the set of parameters for

the m-th dictionary element, (σ2
f )m is the signal vari-

ance and θm is the characteristic length scale (Ras-
mussen and Williams, 2006).

Note that in our covariance-function specification, we
are assuming that the Gaussian process is isotropic
in different spatial axes, s, provided that different di-
mensions share the same characteristic length scale,
θm. This assumption may seem strong, but works well
in practice (He and Siu, 2011). Since our covariance
function is multiplicative and isotropic, the similarity
between any two patches centered at li and li′ is based
on the Euclidean distance between their centers.

Pólya-gamma augmentation Gaussian process pri-
ors linked to binary data as in (4) have been tradition-
ally used for classification tasks. In such a scenario,
the Laplace approximation or Expectation Propaga-
tion (EP) are typically employed to approximate the
non-Gaussian posterior resulting from non-Gaussian

likelihoods (Rasmussen and Williams, 2006). MCMC
approaches have been proposed as well (Neal, 1997),
but they are known to be inefficient because the poste-
rior distribution has to describe highly correlated vari-
ables. Here we focus on Gibbs sampling, leveraging
the Pólya-Gamma (PG) data augmentation scheme of
Polson et al. (2013). In contrast to probit-based aug-
mentation, PG augmentation has been shown to be ef-
ficient with sophisticated posteriors (Gan et al., 2015),
while enjoying theoretical guarantees in terms of unbi-
ased estimates of posterior expectations (Choi et al.,
2013). Briefly, and of relevance to our method, if the
auxiliary variable γ is draw from Pólya-gamma distri-
bution, i.e., γ ∼ PG(1, 0), the following identity holds
for any ψ

eψ

1 + eψ
=

1

2
e
ψ
2

∫ ∞
0

e−
γψ2

2 p(γ)dγ .

This identity enables one to write the joint distribution
for zm = {z1m, . . . , zNm}, ym = {y1m, . . . , yNm} and
γm = {γ1m, . . . , γNm} as

p(zm,ym,γm|bm) ∝ p(ym|bm)p0(γm)∏
i exp

{(
zim − 1

2

)
yim − 1

2γimy
2
im

}
,

(6)

which is convenient because it gives rise to closed-form
conditional posteriors for zm, ym and γm.

Gibbs updates for each yim can be obtained by con-
ditioning on the remaining y\im , ym\yim. In the
following discussion, we use the notation K to denote
the N ×N Gram matrix of the Gaussian process ob-
tained by evaluating km(li, ·) at {li}Ni=1, and we omit
the dictionary index m for clarity. From (6) we obtain

yi|− ∼ N (µ∗, σ∗) , (7)

µ∗ =

(
ki,\iK

−1
\i,\iy

T
\i

ki,i − ki,\iK−1\i,\ik
T
i,\i

+ zi −
1

2
− γib

)
σ2
∗ ,

σ2
∗ =

(
1

ki,i − ki,\iK−1\i,\iK
T
i,\i

+ γi

)−1
,

K =

[
ki,i ki,\i
kTi,\i K\i,\i

]
,

where “−” denotes all conditioning parameters. Note
that both K and y have been permuted to keep ki,i on
the left-top corner of the matrix, for notational con-
venience. We adopt a patch-by-patch approach to se-
quentially sample all patches indexed by i. It is possi-
ble to sample sub-regions of adjacent patches simulta-
neously from a blocked multivariate Gaussian. How-
ever, sub-region size should be carefully selected or
estimated from data. As an alternative to sampling,
we could use fast variational methods for sparse GPs
instead (Titsias, 2009; Hensman et al., 2013). We leave
these possibilities as interesting future work.
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The conditional posterior for binary activations, zim, is
dependent on both dictionary factorization and Gaus-
sian process prior, thus we can write

zim|− ∼ Bernoulli (p∗im/(1 + p∗im)) , (8)

p∗im = exp

 1

σ2
ε

J∑
j=1

xij − ∑
m′ 6=m

djm′sim′

 djmwim

− 1

2σ2
ε

(djmwim)2 + yim + bm

}
.

Kronecker method Unfortunately, the approach
in (7) is costly, scaling as O(N3) time and O(N2)
memory per patch, due to matrix inversion. As a re-
sult, it becomes prohibitive even when processing rel-
atively small images, say where N = (256−8+1)2, for
a 256× 256 image and patch size 256× 256. Recently,
efficient GP methods were proposed for both Gaus-
sian (Gilboa et al., 2015) and non-Gaussian (Flax-
man et al., 2015) likelihoods, by exploiting the Kro-
necker structure of multiplicative GPs. In this paper,
we adopt the fast inference method of Gilboa et al.
(2015), where the computational cost can be effec-
tively reduced to O(N3/2) time and O(N) memory

per patch. Specifically, by defining Γ =

[
γ−1 0
0 0

]
,

from the block matrix inversion lemma (Petersen and
Pedersen, 2012) we can write

(K + Γ)
−1

=

[
ki,i + γ−1 ki,\i
kTi,\i K\i,\i

]−1
γ→0
≈

[
0 0
0 K−1\i,\i

]
.

(9)

The approximation in (9) allows us to perform a sin-
gle inversion on the full Gram matrix, K, instead of
K\i,\i. This is desirable becauseK can be represented
as K = K1⊗K2. Existing Kronecker methods can be
applied via Preconditioned Conjugate Gradient (PCG)
(Shewchuk, 1994), by solving the following linear sys-
tem of equations

P (K + Γ)
−1
P Tx = PyT , (10)

where P = Γ−
1
2 is the pre-conditioner matrix. The

key idea behind (10) relies on the fast computation
of α = (⊗Dd=1Ad)b. Complete details about this algo-
rithm are provided in the Supplementary Material. To
further reduce computational cost, we ignore locations
with negligible correlation w.r.t the current location,
i.e., ρ(i, i′) < 10−6. This enables us to consider only a
relatively small number of neighbor patches within ra-
dius R to the current location. This is a consequence
of the light tails of the SE covariance function. In
practice, we found that the neighborhood radius, R,

is determined by the length scale of the GP, θ, and is
usually less than 20. Thanks to this approximation,
the computation cost per patch is further reduced to
O(R3) time.

Automatic relevance determination To estimate
the parameters of the covariance functions, {Θm}Mm=1,
we use maximum a posterior (MAP) estimation for
(σ2
f )m and θm, corresponding to dictionary element

m. This is done by maximizing the conditional log-
posterior function, Lm. Omitting constant terms we
can write Lm as

Lm = log
∏N
i=1p(yim|(σ2

f )m, θm)p0((σ2
f )m, θm)

= − 1

2
log |K| − 1

2
yTmK

−1ym + log p0
(
(σ2
f )m, θm

)
,

where p0 is the prior for (σ2
f )m and θm, specified as

logN (0, 1) × logN (0, 1). Provided that we estimate
individual characteristic length scales, θm for each
factor, m, in a MAP context, our approach can be
seen as an instance of automatic relevance determi-
nation (Neal, 1996). Again, the Kronecker product
trick can be employed for fast inference via Cholesky
decompositions, denoted here as chol(·). The entire
computation for one patch can be done in O(N3/2)
time and O(N) memory. We can write

Lm = −
√
N

2
log |K(1)

m | −
√
N

2
log |K(2)

m | −
1

2
Tr(vTv)

+ log p0
(
(σ2
f )m, θm

)
,

where v = ym{(LT1 )−1⊗(LT2 )−1} and L1 = chol(K
(1)
m )

and L2 = chol(K
(2)
m ). Note that parameters,

{Θm}Mm=1, are factor-wise independent, thus can be
updated in parallel.

Dictionary size determination So far we have only
considered a predefined dictionary size M . It is possi-
ble, to incorporate a non-parametric determination of
dictionary size, by borrowing ideas from the sampling
scheme used in beta processes (Thibaux and Jordan,
2007). Starting from an arbitrary-sized binary acti-
vation matrix, {zi}Ni=1, the number of new dictionary
elements associated with sample i can be drawn from
Poisson(α/N). Conversely, if binary activations for a
dictionary element are all zero, we delete the corre-
sponding column of D. Despite of the lack of theoret-
ical guarantees due to the non-exchangeability implied
by the GP prior, in practice, this heuristic approach
can automatically resize the dictionary, until an equi-
librium is reached.

Missing pixels In tasks such as inpainting, we are
given images with missing pixels. As in Zhou et al.
(2009), missing pixel values can be integrated out,
thus inference can be performed w.r.t. observed pixels
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only. Further, we can impute missing values by treat-
ing them as latent variables to be estimated jointly
with all the other parameters of the model, via closed-
from conditional predictive distributions.

4 DICTIONARY LEARNING WITH
GP-SBN

We leverage sigmoid belief networks (SBNs) as an al-
ternative way of linking binary activations in (1) with
the binary output from the GP in (3). As shown in
Figure 1, instead of placing a GP prior on each of the
M dictionary elements as in GP-FA, we use GPs to
impose spatial dependency on the hidden units of an
SBN. We denote this model as GP-SBN-FA, for short.
Building upon recent work on SBNs (Gan et al., 2015),
we consider an SBN with L binary units, which can be
written as

zi ∼ Bernoulli(σ(V hi + b)) ,

hi ∼ Bernoulli(σ(yi)) ,
(11)

where yi = (yi1, . . . , yiM )T has a GP prior, as in (4),
and hi ∈ {0, 1}L is a vector of L binary units. The
weight matrix, V ∈ RM×L, contains L features en-
coding M dictionary elements correlations. We place
a three-parameter beta normal prior on the weight ma-
trix, V , which has demonstrated good mixing per-
formance (Gan et al., 2015). Further, we let b ∼
N (0, IM ), for simplicity. Closed-form conditional pos-
teriors for {V , b} via Gibbs sampling are available via
Pólya-gamma data augmentation (Gan et al., 2015).
The conditional posterior for hi is very similar to that
for zim in (8). See the Supplementary Material about
Gibbs updates for {V , b} and {hi}Ni=1. In this work
we only consider one-layer SBNs as in (11). However,
adding layers to form deep architectures is straight-
forward, as previously described by Gan et al. (2015).
Use of deep SBNs may result in more computational
savings, as the number of top-layer deep SBN units can
be small, reducing the number of needed GPs. With
this said, the single-layer SBN considered here yields
excellent results, and computational savings.

From Figure 1 and (11), we see that we are impos-
ing smoothness on the activation of latent features of
the SBN, not on the activation of dictionary elements,
zi, as in GP-FA. It is likely that the number of SBN
features, L, needed to describe correlations across dic-
tionary elements is considerably smaller than the dic-
tionary size, and therefore M < L. We have observed
that L = M/2 works well in practice.

GP-SBN-FA is motivated by two key ideas. First, the
SBN accounts for inter-dictionary dependencies via V ,
thus it learns the correlation structure of dictionary
elements w.r.t. the probability of binary activations.

h11 h12

z11 z12 z13 z14

h31 h31

z31 z32 z33 z34

h41 h42

z41 z42 z43 z44

h21 h22

z21 z22 z23 z24

V

V

V

V

f1

f2

Figure 1: GP-SBN-FA setup. Dashed lines represent
GP fields (f1(·) and f2(·)). Instead of directly impose
GP priors on {zi}Ni=1, GP-SBN-FA assigns GP priors
to the hidden units of the SBN, {hi}Ni=1, that further
impose correlation structure on dictionary elements,
D. The weights V are shared across patches.

Second, by placing GP priors directly on the hidden
units of the SBN, we need to specify fewer GPs, thus
reducing the overall computational cost.

Previous work has shown that one-layer SBNs with in-
finite number of hidden units can be explained as GPs
(Neal, 1996). However, stacking GPs in multi-layer
configurations such as that of Damianou and Lawrence
(2013) can be prohibitive due to the high cost of GP
inference. Our GP-SBN-FA can be seen as a way to
combine the flexibility of GPs with the computational
efficiency of SBNs, in a model where GPs are only used
where they are most needed, in our case to capture
spatial dependencies.

5 DEPTH INFORMATION
RESTORATION

Modern consumer depth cameras (Zhang, 2012) cap-
ture color and depth (RGB-D) information of a scene.
However, depth maps captured by these devices are
often noisy and miss values at some pixels, especially
around object boundaries. Meanwhile, color images
are often noisy (Lu et al., 2014a). Our GP approach
can be naturally extended to characterize dependen-
cies between different channels, for simultaneously im-
puting missing depth values and denoising RGB-D
channels. While the method described above charac-
terizes the spatial-dependency within a single channel,
here we generalize it to multiple channels, to exploit
channel dependencies in RGB-D images. To the best
of our knowledge, this is the first Bayesian approach
for the joint learning of multi-channel images applied
to RGB-D image restoration.

Our method can be applied to this scenario by consid-
ering a 3-D covariance function for the GP. We extend

the covariates for patch i as li = {l(1)i , l
(2)
i , l

(c)
i }, where
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l
(c)
i = {R,G,B,D} indicates the channel of patch i.

Prior domain knowledge suggests that depth-to-RGB
correlation must be lower than correlation within RGB
channels (Lu et al., 2014a). To leverage such prior
information, we introduce two additional parameters
in our GP formulation. We let θdm to describe the
relative depth-to-RGB dissimilarity. The dissimilarity
within RGB is defined as 1 to avoid identifiability is-
sues. We also let θcm be the characteristic length scale
of the third-dimension covariance function, kcm. The
covariance function, represented in Gram matrix, is

defined as Km = K
(1)
m ⊗K(2)

m ⊗K(c)
m . Specifically,

k(c)m (l
(c)
i , l

(c)
i ) = (σ2

f )m exp{−dist(l
(c)
i , l

(c)
i′ ; θdm)2/θcm} ,

dist(l
(c)
i , l

(c)
i′ ) =


0, if l

(c)
i = l

(c)
i′

θdm, if l
(c)
i = {D} and l

(c)
i′ ∈ {R,G,B}

θdm, if l
(c)
i ∈ {R,G,B} and l

(c)
i′ = {D}

1, if c 6= l
(c)
i′ and l

(c)
i , l

(c)
i′ ∈ {R,G,B}

Conceptually, when determining whether a certain
dictionary is activated on a certain patch, the model
seeks for both dictionary activation structure within
current channel and across different channels. This
is desirable because dictionary elements are shared
among all channels, thus dictionary elements appear-
ing in one channel are likely to appear at the same
location in other channels.

We note that the depth channel may exhibit smoother
transitions when activating dictionary elements com-
pared to color channels (Lu et al., 2014a). This be-
havior can be characterized by a more-sophisticated
covariance function, where spatial functions for patch

pair {i, i′}, i.e., k
(1)
m (li, li′) and k

(2)
m (li, li′) are no

longer independent of the value of the channel covari-

ates, {l(c)i , l
(c)
i′ }. One particular drawback of such a

setup is that the Kronecker method that yields fast in-
ference is not feasible anymore. In view of this, we re-
sort to a simple solution where kernels are independent
of each other. Like in the previous section, parameters
θdm and θcm are inferred using MAP estimation.

6 EXPERIMENTS

We present experiments on two sets of images. The re-
sults on gray-scale images for denoising and inpainting
tasks highlight how characterization of spatial struc-
ture improves results. Results on RGB-D images
demonstrates that our GP based approach can im-
prove the restoration of multi-channel images, by cap-
turing channel dependencies.

σ = 25
Method C.man House Pepper Lena Barbara

BPFA 28.41 31.92 29.36 31.25 28.83
GP-FA 28.70 32.22 29.65 31.42 29.11

GP-SBN-FA 28.99 32.23 29.78 31.51 29.18
Method Boats F.print Man Couple Hill

BPFA 29.25 27.44 29.06 28.89 29.29
GP-FA 29.49 27.55 29.27 29.04 29.49

GP-SBN-FA 29.56 27.54 29.23 29.15 29.52
σ = 50

Method C.man House Pepper Lena Barbara
BPFA 24.31 27.62 25.41 27.59 25.14

GP-FA 24.66 28.12 25.71 27.80 25.44
GP-SBN-FA 24.66 28.15 25.67 27.83 25.39

Method Boats F.print Man Couple Hill
BPFA 25.72 23.80 25.95 25.37 26.25

GP-FA 25.99 23.91 26.22 25.51 26.48
GP-SBN-FA 26.03 23.89 26.18 25.45 26.45

Table 1: Denoising results for 2 noise levels σ =
{25, 50}. Performance is measured as PSNR in dB.

6.1 2-D Grayscale Images

Denoising We analyzed 10 gray-scale images typi-
cally used for demonstration of image denoising. We
added isotropic i.i.d. Gaussian noise, N (0, σ), to each
pixel with σ = 25 and 50. As input to our model, each
image was partitioned into 8 × 8 patches with sliding
distance of one pixel, i.e., the distance between centers
of neighbor patches is one pixel. We ran 500 MCMC
iterations with random initialization and kept the last
50 samples for image reconstruction (averaging over
these collection samples). The hyper-parameters con-
trolling Gaussian distribution variances, i.e., σw, σε,
σb and σλ, were all set to 0.1. As suggested in Zhou
et al. (2009), the hyper-parameters for the Gamma dis-
tributions were set to 10−6. Dictionary sizes in both
GP-FA and GP-SBN-FA are initially set to 128. In
GP-SBN-FA, we use a one-layer SBN with the number
of binary units set to half the size of the dictionary (re-
ducing the number of GPs by half). For each MCMC
iteration, computations were parallelized w.r.t. dic-
tionary elements using a desktop GPU. We use Peak
Signal-to-Noise Ratio (PSNR) to measure the recovery
performance of original images. Compared with BPFA
(Zhou et al., 2009), as shown in Table 1, GP-SBN-FA
yields the best results for most images under different
noise regimes. The performance of dHBP (Zhou et al.,
2011) is similar to BPFA but no better than GP-FA
or GP-SBN-FA, thus not shown.

Inpainting We performed image interpolation on
the same gray-scale images from the previous experi-
ment, where a portion of pixels was set to missing at
random. The dictionary size is set as either 256 or
512, to match image size. Other hyper-parameters are
set as in the denoising task. We consider two observed
data ratios, 20% and 50% (observed pixels selected
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Method C.man House Pepper Lena Barbara
BPFA 28.90 38.02 32.58 36.94 33.17
dHBP 29.89 38.83 32.90 37.14 36.03

GP-FA 29.03 38.53 32.84 37.18 33.18
GP-SBN-FA 28.98 38.89 33.04 37.01 33.33

Method Boats F.print Man Couple Hill
BPFA 33.78 33.53 33.29 35.56 34.23
dHBP 33.92 32.70 33.72 33.54 34.14

GP-FA 34.16 34.08 33.83 34.63 34.46
GP-SBN-FA 33.98 33.89 33.54 33.60 34.31

Table 2: Inpainting results, 50% observed data. Per-
formance is measured as PSNR in dB.

uniformly at random). 500 MCMC iterations were
used and 50 samples were collected for reconstruction.
In this task, we compared with dHBP and BPFA, re-
sults and experiment settings for dHBP were obtained
from Zhou et al. (2011). The results on 50% observed
data are shown in Table 2. GP-FA and GP-SBN-FA
can generally yield better PSNR than dHBP when the
proportion of observed data is relatively high, 50%.
When this proportion drops to 20%, dHBP tends to
outperform our approach (see the Supplementary Ma-
terial). We hypothesize that lower observed propor-
tions may lead to poor estimation of the GP poste-
rior, where a predefined filtering function with domain
knowledge such as that of dHBP may be favorable.

The learned dictionary elements and binary activa-
tions for dictionary elements, obtained from 50% ob-
served data and GP-FA, are shown in Figure 2. For
GP-SBN-FA, the binary units of SBN are also shown
in Figure 3. Both GP-FA and GP-SBN-FA effectively
capture spatial dependencies by incorporating GP pri-
ors. The binary activation patterns of GP-SBN-FA
for each dictionary, as seen in Figure 3(a), seem to be
more similar with each other, compared to those from
GP-FA, see Figure 2(a). One explanation is that the
imposed SBN architecture encourages blocks of dic-
tionary elements to simultaneously turn on or turn
off. The results showing inter-dictionary dependency
are provided in the Supplementary Material. Such an
inter-dictionary dependency assumption is useful if the
dictionary elements are heavily correlated.

All the experiments were conducted on a single ma-
chine with two 2.7 GHz processors and 12 GB RAM.
By taking advantage of GPU and partial C++ imple-
mentation, the running time of GP-FA and GP-SBN-
FA is comparable with dHBP. For a 256×256 image,
one single iteration of GP-FA takes 96 seconds, while
GP-SBN-FA takes 68 seconds. When doubling the
number of MCMC iterations, the average PSNR for
our method increases by approximately 0.15 dB for
both GP-FA and GP-SBN-FA in the inpainting tasks,
suggesting that taking more MCMC iterations may
marginally improve results.

(a) (b)

Figure 2: Inpainting from GP-FA. a) Binary activa-
tions of dictionary elements learned. Each block rep-
resents a (reshaped) dictionary element. Bright points
indicate dictionary activation for a given patch. First
64 dictionary elements are shown. Average sparsity
level is around 5%. b) Dictionary elements learned.

6.2 Depth Restoration

We applied our methods to the 30 images of the Mid-
dlebury stereo dataset (Scharstein and Szeliski, 2002;
Lu et al., 2014a). The provided RGB images are noisy,
and the depth-information for each image has a por-
tion of missing pixels, 14% in average. The task is
to jointly recover the corrupted pixels in the depth
map and to denoise RGB-D channels. We compared
our methods with BPFA and dHBP. These models
can directly process RGB data by collapsing channels.
However, our model leverages the information across
channels independently. Thus, instead of extracting
patches that consist of all RGB-D channels, i.e., each
patch having 8×8×4 pixels, we extract patches within
each channel individually, 8×8 pixels, to impose milder
assumptions on the dependency structure over chan-
nels (see Supplementary Material for details). For fair
comparison, we also tested BPFA and dHBP under
this patch extraction strategy. The learned dictio-
nary elements are shared across channels. The pro-
posed patch extraction approach leads to a ∼ 1dB im-
provement in PSNR for BPFA and dHBP. We used
500 burn-in samples for our methods, and kept 50
MCMC collection samples for image reconstruction.
For BPFA and dHBP, we use default settings for the
hyper-parameters (see Supplementary Material for de-
tails), and perform 64 sequential MCMC iterations
with incomplete data (Zhou et al., 2009), followed by
300 MCMC iterations. An overall comparison of depth
channel interpolation task is shown in Figure 4. In gen-
eral, GP-FA is marginally better than GP-SBN-FA,
as in about 75% images it performs better than GP-
SBN-FA. However, GP-SBN-FA is approximately 25%
faster than GP-FA. GP-FA and GP-SBN-FA are con-
sistently better than dHBP and BPFA in all images.
A detailed comparison for each image is provided in
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(a) (b) (c)

Figure 3: Inpainting from GP-SBN-FA. a) Binary activations of dictionary elements learned. First 64 dictionary
elements are shown. b) Binary hidden units of SBN. c) Dictionary elements learned.

the Supplementary Material. Figure 5 shows for one
image, restored image and restored depth-information.

-2.5 -2 -1.5 -1 -0.5 0
PSNR difference w.r.t. GP-FA (dB)

GP-SBN-FA

BPFA

dHBP

GP-FA

Figure 4: Summarized results of depth-information
restoration comparison. Each method was compared
with GP-FA, computing differences in PSNR for each
image w.r.t. GP-FA. Boxplots summarize the distri-
bution of such differences over all images. The red
horizontal line denotes the median PSNR difference.

Provided that the original implementation of dHBP
only applies to 2-D spatial filters, we performed an-
other experiment on dHBP, where channel information
was excluded from the covariance function, i.e., we re-

moved k
(c)
m from their smoothing function. We veri-

fied that resulting PSNRs with and without channel
information are about the same (see Supplementary
Material for details).

One key observation about our approach is that by

removing the third covariance function, k
(c)
m , the re-

sulting average PSNR decreases by about 0.5 dB. This
suggests that imputation on the depth channel can ef-
fectively borrow information from color channels via
the GP prior. Another phenomenon is that for cases
where the local smoothness assumption about the data
does not hold, FA-GP and dHBP do not perform well.
We also noticed that FA-GP yields good imputation
results particularly when the image has repeated pat-
terns. This may be explained by the fact that GPs
can capture periodic behaviors, whereas smoothing

kernel functions decaying over distance are likely to
fail. We also found that the binary activation pat-
terns of RGB channels are similar to each other, while
the activate dictionary elements in the depth chan-
nel exhibit weaker similarities with color channels (see
Supplementary Material for detailed results).

Corrupted image, 20.3541dB Original image Restored image, 27.2739dB

Corrupted depth, 18.8956dB Original depth Restored depth, 35.082dB

Figure 5: Depth restoration results using GP-FA. The
task is to jointly denoise RGB channels and interpolate
the depth channel. Upper panels shows recovery from
a noisy RGB image. Lower panel shows interpolation
of depth-information.

7 DISCUSSION

We have presented a dictionary learning model that
captures spatial correlation of dictionary activation
patterns in a principled non-parametric way. Binary
activation vectors indicating the presence or absence
of each dictionary element are established either via
a Gaussian process field followed by logistic link func-
tions, or a Gaussian process field followed by a sig-
moid belief network. Pólya-gamma augmentation and
Kronecker methods were described for efficient MCMC
inference. Experiments on real-world images demon-
strated that our approach performs better than related
Bayesian dictionary learning models in inpainting, de-
noising and depth restoration tasks.
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