
Bayesian Dictionary Learning with
Gaussian Processes and Sigmoid Belief Networks

Abstract
In dictionary learning for analysis of images, spa-
tial correlation from extracted patches can be lever-
aged to improve characterization power. We pro-
pose a Bayesian framework for dictionary learning,
with spatial location dependencies captured by im-
posing a multiplicative Gaussian process (GP) pri-
ors on the latent units representing binary activa-
tions. Data augmentation and Kronecker methods
allow for efficient Markov chain Monte Carlo sam-
pling. We further extend the model with Sigmoid
Belief Networks (SBNs), linking the GPs to the
top-layer latent binary units of the SBN, capturing
inter-dictionary dependencies while also yielding
computational savings. Applications to image de-
noising, inpainting and depth-information restora-
tion demonstrate that the proposed model outper-
forms other leading Bayesian dictionary learning
approaches.

1 Introduction
Learning overcomplete sparse latent representations for sig-
nal restoration and characterization has recently led to state-
of-the-art results in tasks such as image denoising, inpaint-
ing, super-resolution and compressive sensing (Zhou et al.,
2009; Yang et al., 2012). Traditional approaches learn sparse
codes from a fixed number of dictionary elements, while min-
imizing the reconstruction error subject to imposed sparsity
regularization (Aharon et al., 2006; Mairal et al., 2009b).
Non-parametric Bayesian approaches have been introduced
to tackle this challenge (Zhou et al., 2009, 2012; Polatkan
et al., 2015), by employing methodologies like the Indian
Buffet Process (IBP) (Ghahramani and Griffiths, 2005). Such
Bayesian approaches also provide a principled way to esti-
mate uncertainty and typically yield excellent generalization
ability.

Recent work has demonstrated that modeling images as
a collection of sub-regions or patches is important, because
leveraging local image structure is instrumental for represen-
tational quality (Mairal et al., 2009b; Zhou et al., 2009). The
key idea in this line of work is that similar patches are likely
to share dictionary elements. Furthermore, dictionary learn-
ing can be greatly improved by imposing that patches close in

space are likely to use the same or similar dictionary elements
(Zhou et al., 2011). Specifically, the dependent Hierarchical
Beta Process (dHBP) (Zhou et al., 2011) utilizes a dependent
IBP to capture spatial correlations, via a 2-D smoothing func-
tion based on patch locations. Although this approach leads to
dramatic performance improvements, the smoothing function
has to be specified parametrically, and the posterior of their
Bayesian formulation is not locally conjugate, which makes
inference challenging.

Gaussian Process (GP) priors (Rasmussen and Williams,
2006) are a natural choice for capturing spatial dependencies.
Such priors provide a principled non-parametric way to es-
timate correlation as a function of relative spatial location.
However, despite great flexibility, GPs are known to be com-
putationally expensive; in fact, they become prohibitively ex-
pensive as the number of observations grows.

In this paper, we propose a framework for dictionary learn-
ing where patch-to-patch spatial dependencies are modeled
via GP priors linked to binary dictionary element activa-
tions. Furthermore, we utilize deep Sigmoid Belief Networks
(SBNs) to impose correlation structure across dictionary ele-
ments. We demonstrate that use of the SBN reduces the num-
ber of needed GP draws, thereby also manifesting significant
computational acceleration.

The contributions from our framework are: (i) Gaus-
sian process priors that capture spatial dependencies between
patches in images; (ii) SBNs that capture dependencies be-
tween dictionary elements; (iii) efficient inference via Kro-
necker methods for GPs, and a fully local conjugate Bayesian
formulation based on Pólya-gamma data-augmentation; (iv)
computational savings by reducing the number of needed
GPs, by linking them to the top layer of the SBN; (v) results
on denoising, inpainting and depth restoration, that demon-
strate the flexibility of our approach and highlight how learn-
ing dependency structure yields superior performance.

Related Work Several studies have employed GPs in
tasks such as interpolation (Wachinger et al., 2014a), super-
resolution (Wachinger et al., 2014a; He and Siu, 2011) and
denoising (Liu, 2007; Wang et al., 2014). These works are
based on the insight that images composed of noisy or cor-
rupted patches can be used to produce clean images as output,
by leveraging statistical correlations between image patches.
Similar patches are more likely to have same outputs. Our



work is complementary to their work in that we use GPs for
location dependencies, not patch similarities.

Other work has also explored GPs as priors for dictio-
nary elements. Xing et al. (2012) characterized multi-channel
hyper-spectral images, where each channel is associated with
a distinct wavelength. Their assumption is that dictionary el-
ements from different channels are smooth as a function of
wavelength, whereas we assume that dictionary activation is a
smooth function of location. Garrigues and Olshausen (2007)
developed a method close to ours; they proposed a sparse cod-
ing model where spatial dependencies are imposed via pair-
wise coupling using an Ising model. However, their model
requires a user-defined temperature parameter that uniquely
controls the strength of coupling.

2 Background: Bayesian Dictionary Learning
Assume observed data X = {x1, . . . ,xN} ∈ RJ×N , where
xi represents one ofN patches extracted from a single image.
In Bayesian dictionary learning, the goal is to learn dictionary
elements, D = {d1, . . . ,dM} ∈ RJ×M from X . The i-th
observations is represented as

xi =D(wi � zi) + εi , εi ∼ N (0, σ2
εIJ) ,

dm ∼ N (0, IJ) , wi ∼ N (0, σ2
wIM ) ,

(1)

where � denotes the Hadamard product, and IJ is the J × J
identity matrix. Vectors wi = {wi1, . . . , wiM} ∈ R

M

and zi = {zi1, . . . , ziM} ∈ {0, 1}M represent real weights
and binary activations, respectively. Specifically, zi encodes
which dictionary elements are used to represent xi, and εi
is i.i.d. additive Gaussian noise (or model residual). Hyper-
priors are placed on the variances of wi and εi, via inverse-
Gamma distributions on σ2

w and σ2
ε , which enables us to share

dispersion information across dictionary elements.

3 Dictionary Learning with Gaussian
Processes

One possible approach to encourage sparsity in the binary ac-
tivations, zi, is to use a Bernoulli-beta specification (Zhou
et al., 2009), which assumes each zi is drawn i.i.d.. How-
ever, Zhou et al. (2011) demonstrated that it is reasonable
to assume that patches located near each other are likely to
be represented in terms of the same or similar dictionary ele-
ments, and thus binary activations of nearby patches are likely
to be consistent with spatial dependencies. We incorporate
such prior belief into (1) by means of a GP on a 2-D spatial
field. Our approach differs from Zhou et al. (2011), in that
GPs allow estimation of binary activation dependencies, by
connecting the GP output to a logistic link function. We call
our method Gaussian Process Factor Analysis (GP-FA). The
construction for the m-th binary activation, zim becomes

zim ∼ Bernoulli(σ(yim)) ,

yim = fm(li) , fm(·) ∼ GP(µm(·), km(·, ·)) , (2)
where σ(·) denotes the sigmoid function, yim is the value of
function fm(·) evaluated at the i-th patch, with the spatial co-
ordinates of li = {l(1)i , l

(2)
i }, where l(q)i denotes the coordi-

nates of q-th dimension in 2D images. The function fm(·) is

drawn from a GP with constant mean function, µm(·) = bm,
and multiplicative covariance function, km(li, ·), defined as
km(li, ·) = k

(1)
m (l

(1)
i , ·)⊗ k(2)m (l

(2)
i , ·). For the mean, bm, we

specify a Gaussian prior with mean and variance, λm and σ2
b ,

respectively:

bm ∼ N (λm, σ
2
b ) , λm ∼ N−(0, σ2

λ) . (3)

To encourage sparsity in the activations, zim, we bias func-
tion instances, yim, towards negative values using a negative-
truncated Gaussian distribution, denoted as N−, with vari-
ance σ2

λ. Since this prior is shared by all factors, it encourages
sparsity globally. Further, the hierarchy in (3) is convenient
from a practical standpoint, because it yields local conjugacy.

For the covariance function, km(·, ·), we consider the
widely used squared exponential (SE) function. Specifically,
the covariance function for axis s = {1, 2}, is defined as

k(s)m (l(s), l(s
′);Θm) = (σ2

f )m exp{−(l(s) − l(s
′))2/θm} ,

where Θm = {(σ2
f )m, θm} is the set of parameters for the

m-th dictionary element, (σ2
f )m is the signal variance and θm

is the characteristic length scale (Rasmussen and Williams,
2006).

Note that in our covariance-function specification, we are
assuming that the Gaussian process is isotropic in different
spatial axes, s, provided that different dimensions share the
same characteristic length scale, θm. This assumption may
seem strong, but works well in practice (He and Siu, 2011).
Since our covariance function is multiplicative and isotropic,
the similarity between any two patches centered at li and li′
is based on the Euclidean distance between their centers.

Pólya-gamma augmentation Gaussian process priors
linked to binary data as in (2) have been traditionally used for
classification tasks. In such a scenario, the Laplace approx-
imation or Expectation Propagation (EP) are typically em-
ployed to approximate the non-Gaussian posterior resulting
from non-Gaussian likelihoods (Rasmussen and Williams,
2006). MCMC approaches have been proposed as well (Neal,
1997), but they are inefficient because the posterior distribu-
tion has to describe highly correlated variables. Here we em-
ploy Gibbs sampling, leveraging the Pólya-gamma (PG) data
augmentation scheme of Polson et al. (2013). In contrast to
probit-based augmentation, PG augmentation has been shown
to be efficient with sophisticated posteriors (Gan et al., 2015),
while enjoying theoretical guarantees in terms of unbiased es-
timates of posterior expectations (Choi et al., 2013). Briefly,
if the auxiliary variable γ is draw from Pólya-gamma distri-
bution, i.e., γ ∼ PG(1, 0), the following identity holds for
any ψ

eψ

1 + eψ
=

1

2
e
ψ
2

∫ ∞
0

e−
γψ2

2 p(γ)dγ .

This identity enables one to write the joint distribution for
zm = {z1m, . . . , zNm}, ym = {y1m, . . . , yNm} and γm =
{γ1m, . . . , γNm} as

p(zm,ym,γm|bm) ∝ p(ym|bm)p0(γm)∏
i exp

{(
zim − 1

2

)
yim − 1

2γimy
2
im

}
,

(4)



which is convenient because it gives rise to closed-form con-
ditional posteriors for zm, ym and γm.

Gibbs updates for each yim can be obtained by condition-
ing on the remaining y\im , ym\yim. In the following
discussion, we use the notation K to denote the N × N
Gram matrix of the Gaussian process obtained by evaluating
km(li, ·) at {li}Ni=1, and we omit the dictionary index m for
clarity. From (4) we obtain

yi|− ∼ N (µ∗, σ∗) , K =

[
ki,i ki,\i
kTi,\i K\i,\i

]
,

µ∗ =

(
ki,\iK

−1
\i,\iy

T
\i

ki,i − ki,\iK−1\i,\ik
T
i,\i

+ zi −
1

2
− γib

)
σ2
∗ ,

σ2
∗ =

(
1

ki,i − ki,\iK−1\i,\iK
T
i,\i

+ γi

)−1
, (5)

where “−” denotes all conditioning parameters. Note that
both K and y have been permuted to keep ki,i on the left-
top corner of the matrix, for notational convenience. We
adopt a patch-by-patch approach to sequentially sample all
patches indexed by i. It is possible to sample sub-regions of
adjacent patches simultaneously from a blocked multivariate
Gaussian. However, sub-region size should be carefully se-
lected or estimated from data. As an alternative to sampling,
we could use fast variational methods for sparse GPs instead
(Titsias, 2009; Hensman et al., 2013). We leave these possi-
bilities as interesting future work.

The conditional posterior for binary activations, zim, is de-
pendent on both dictionary factorization and Gaussian pro-
cess prior, thus we can write

zim|− ∼ Bernoulli (p∗im/(1 + p∗im)) , (6)

p∗im = exp

 1

σ2
ε

J∑
j=1

xij − ∑
m′ 6=m

djm′sim′

 djmwim

− 1

2σ2
ε

(djmwim)2 + yim + bm

}
.

Kronecker method Unfortunately, the approach in (5)
is costly, scaling as O(N3) time and O(N2) memory per
patch, due to matrix inversion. As a result, it becomes pro-
hibitive even when processing relatively small images, say
where N = (256 − 8 + 1)2, for a 256 × 256 image and
patch size 256 × 256. Recently, efficient GP methods were
proposed for both Gaussian (Gilboa et al., 2015) and non-
Gaussian (Flaxman et al., 2015) likelihoods, by exploiting the
Kronecker structure of multiplicative GPs. In this paper, we
adopt the fast inference method of Gilboa et al. (2015), where
the computational cost can be effectively reduced toO(N3/2)
time and O(N) memory per patch. Specifically, by defining

Γ =

[
γ−1 0
0 0

]
, from the block matrix inversion lemma

(Petersen and Pedersen, 2012) we can write

(K + Γ)−1 =

[
ki,i + γ−1 ki,\i

kTi,\i K\i,\i

]−1
γ→0
≈

[
0 0
0 K−1

\i,\i

]

The approximation above allows us to perform a single in-
version on the full Gram matrix, K, instead of K\i,\i. This
is desirable becauseK can be represented asK =K1⊗K2.
Existing Kronecker methods can be applied via Precondi-
tioned Conjugate Gradient (PCG) (Shewchuk, 1994), by solv-
ing the following linear system of equations

P (K + Γ)
−1
P Tx = PyT , (7)

where P = Γ−
1
2 is the pre-conditioner matrix. The key idea

behind (7) relies on the fast computation ofα = (⊗Dd=1Ad)b.
To further reduce computational cost, we ignore locations
with negligible correlation w.r.t the current location, i.e.,
ρ(i, i′) < 10−6. This enables us to only consider a relatively
small number of neighbor patches within radius R to the cur-
rent location, as a consequence of the light tails of the SE
covariance function. In practice, we found that the radius, R,
is determined by the length scale of the GP, θ, and is usually
less than 20. Thanks to this approximation, the computation
cost per patch is further reduced to O(R3) time.

Automatic relevance determination To estimate the pa-
rameters of the covariance functions, {Θm}Mm=1, we use
maximum a posterior (MAP) estimation for (σ2

f )m and θm,
corresponding to dictionary elementm. This is done by max-
imizing the conditional log-posterior function, Lm. Again,
the Kronecker product trick can be employed for fast infer-
ence via Cholesky decompositions, denoted here as chol(·).
The entire computation for one patch can be done inO(N3/2)
time and O(N) memory. Omitting constant terms,

Lm = −
√
N

2
log |K(1)

m | −
√
N

2
log |K(2)

m | −
1

2
Tr(vTv)

+ log p0
(
(σ2
f )m, θm

)
,

where v = ym{(LT1 )−1 ⊗ (LT2 )
−1} and L1 = chol(K

(1)
m )

and L2 = chol(K
(2)
m ). Note that parameters, {Θm}Mm=1,

are factor-wise independent, thus can be updated in parallel.
p0 is the prior for (σ2

f )m and θm, specified as logN (0, 1) ×
logN (0, 1). Provided that we estimate individual character-
istic length scales, θm for each factor, m, in a MAP context,
our approach can be seen as an instance of automatic rele-
vance determination (Neal, 1996).

Missing pixels In tasks such as inpainting, we are given
images with missing pixels. As in Zhou et al. (2009), miss-
ing pixel values can be integrated out, thus inference can be
performed w.r.t. observed pixels only. Further, we can impute
missing values by treating them as latent variables to be esti-
mated jointly with all the other parameters of the model, via
closed-from conditional predictive distributions.

4 Leveraging the Sigmoid Belief Network
In (1), the GP is directly input to a sigmoid function, and
therefore the number of GPs is equal to the number of dictio-
nary elements. For the large number of dictionary elements
of typical interest, this may be computationally prohibitive.
Additionally, each of the GPs are drawn independently, so in
(1) there is no dependency imposed between the dictionary el-
ements (it is likely that there will be correlation in dictionary
usage).
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Figure 1: GP-SBN-FA setup. Dashed lines represent GP
fields (f1(·) and f2(·)). Instead of directly impose GP pri-
ors on {zi}Ni=1, GP-SBN-FA assigns GP priors to the hid-
den units of the SBN, {hi}Ni=1, that further impose correla-
tion structure on dictionary elements, D. The weights V are
shared across patches.

Both of these limitations are addressed by constituting a
Sigmoid Belief Network (SBN), with the number of binary
units at the bottom SBN layer equal to the number of dictio-
nary elements (the bottom of the SBN replaces the sigmoid
function in (1)). The SBN imposes correlation in dictionary
usage. Further, the GPs are imposed at the top layer of the
SBN, with one GP for each top-layer unit. Since the number
of top-layer units is typically markedly smaller than that at
the bottom SBN layer, this model significantly reduces the
number of needed GPs. This model uses GPs to impose
patch-dependent spatial correlation at the top of the SBN,
and the multiple layers of the SBN impose correlation be-
tween dictionary-element usage (see Figure 1). We denote
this model as GP-SBN-FA.

Building on recent SBN work (Gan et al., 2015), we con-
sider an SBN with L binary units at the top, which can be
written as

zi ∼ Bernoulli(σ(V hi + b)) ,

hi ∼ Bernoulli(σ(yi)) ,
(8)

where a GP prior is placed on the spatial dependence of each
component of yi = (yi1, . . . , yiL)

T , and hi ∈ {0, 1}L is a
vector of L binary units. The weight matrix, V ∈ RM×L,
contains L features encoding M dictionary elements correla-
tions. We place a three-parameter beta normal prior on the
weight matrix, V , which has demonstrated good mixing per-
formance (Gan et al., 2015). Further, we let b ∼ N (0, IM ),
for simplicity. Closed-form conditional posteriors for {V , b}
via Gibbs sampling are available via Pólya-gamma data aug-
mentation (Gan et al., 2015). The conditional posterior for hi
is very similar to that for zim in (6). In this work we only
consider one-layer SBNs as in (8). However, adding layers
to form deep architectures is straightforward, as previously
described by Gan et al. (2015).

It is likely that the number of SBN features, L, needed to
describe correlations across dictionary elements is consider-
ably smaller than the dictionary size, and therefore M < L.
We have observed that L =M/2 works well in practice.

Previous work has shown that one-layer SBNs with infinite
number of hidden units can be explained as GPs (Neal, 1996).

However, stacking GPs in multi-layer configurations such as
that of Damianou and Lawrence (2013) can be prohibitive
due to the high cost of GP inference. Our GP-SBN-FA can
be seen as a way to combine the flexibility of GPs with the
computational efficiency of SBNs, in a model where GPs are
only used where they are most needed, in our case to capture
spatial dependencies.

5 Experiments
We present experiments on two sets of images. The results
on gray-scale images for denoising and inpainting tasks high-
light how characterization of spatial structure improves re-
sults. Results on depth-information recovery demonstrates
that our GP-based approach can improve the restoration of
multi-channel images, by capturing channel dependencies.

5.1 2-D Grayscale Images
Denoising We analyzed 10 gray-scale images typically
used to benchmark image denoising methods. We added
isotropic i.i.d. Gaussian noise, N (0, σ), to each pixel with
σ = 25 and 50 (the gray-scale pixel value range from 0 to
255). As input to our model, each image was partitioned into
8 × 8 patches with sliding distance of one pixel, i.e., the dis-
tance between centers of neighbor patches is one pixel. We
ran 500 MCMC iterations with random initialization and kept
the last 50 samples for image reconstruction (averaging over
these collection samples). The hyper-parameters controlling
Gaussian distribution variances, i.e., σb and σλ, were all set to
0.1. As suggested in Zhou et al. (2009), the hyper-parameters
for the inverse Gamma distributions (the priors for σw and
σε) were set to {10−6, 10−6}. Dictionary sizes in both GP-
FA and GP-SBN-FA are initially set to 128. In GP-SBN-FA,
we use a one-layer SBN with the number of top-layer binary
units L set to half the size of the dictionary M . For each
MCMC iteration, computations were parallelized w.r.t. dic-
tionary elements using a desktop GPU. We use Peak Signal-
to-Noise Ratio (PSNR) to measure the recovery performance
of original images. Compared with BPFA (Zhou et al., 2009),
as shown in Table 1, GP-SBN-FA yields the best results for
most images under different noise regimes. The performance
of dHBP (Zhou et al., 2011) is similar to BPFA but no better
than GP-FA or GP-SBN-FA, thus not shown.

Inpainting We performed image inpainting on the same
gray-scale images from the previous experiment, where a por-
tion of pixels were set to missing (selected uniformly at ran-
dom). The dictionary size M is set as either 256 or 512, to
match image size. Other hyper-parameters are set as in the de-
noising task. We consider two observed pixel ratios, 20% and
50%. 500 MCMC iterations were used, and 50 samples were
collected for reconstruction. In this task, we compared with
dHBP and BPFA; results and experiment settings for dHBP
were obtained from Zhou et al. (2011). The results on 50%
observed data are shown in Table 2. GP-FA and GP-SBN-FA
can generally yield better PSNR than dHBP when the pro-
portion of observed data is relatively high, 50%. When this
proportion drops to 20%, dHBP tends to outperform our ap-
proach. We hypothesize that lower observed proportions may



σ = 25
Method C.man House Pepper Lena Barbara

BPFA 28.41 31.92 29.36 31.25 28.83
GP-FA 28.70 32.22 29.65 31.42 29.11

GP-SBN-FA 28.99 32.23 29.78 31.51 29.18
Method Boats F.print Man Couple Hill

BPFA 29.25 27.44 29.06 28.89 29.29
GP-FA 29.49 27.55 29.27 29.04 29.49

GP-SBN-FA 29.56 27.54 29.23 29.15 29.52
σ = 50

Method C.man House Pepper Lena Barbara
BPFA 24.31 27.62 25.41 27.59 25.14

GP-FA 24.66 28.12 25.71 27.80 25.44
GP-SBN-FA 24.66 28.15 25.67 27.83 25.39

Method Boats F.print Man Couple Hill
BPFA 25.72 23.80 25.95 25.37 26.25

GP-FA 25.99 23.91 26.22 25.51 26.48
GP-SBN-FA 26.03 23.89 26.18 25.45 26.45

Table 1: Denoising results for 2 noise levels σ = {25, 50}.
Performance is measured as PSNR in dB.

Method C.man House Pepper Lena Barbara
BPFA 28.90 38.02 32.58 36.94 33.17
dHBP 29.89 38.83 32.90 37.14 36.03

GP-FA 29.03 38.53 32.84 37.18 33.18
GP-SBN-FA 28.98 38.89 33.04 37.01 33.33

Method Boats F.print Man Couple Hill
BPFA 33.78 33.53 33.29 35.56 34.23
dHBP 33.92 32.70 33.72 33.54 34.14

GP-FA 34.16 34.08 33.83 34.63 34.46
GP-SBN-FA 33.98 33.89 33.54 33.60 34.31

Table 2: Inpainting results, 50% observed data. Performance
is measured as PSNR in dB.

lead to poor estimation of the GP posterior, where a prede-
fined filtering function with domain knowledge such as that
of dHBP may be favorable.

The learned dictionary elements and binary activations for
dictionary elements, obtained from 50% observed data and
GP-FA, are shown in Figure 2(a,b). The binary activation
patterns of GP-SBN-FA for each dictionary, as seen in Fig-
ure 3(a), seem to be more similar with each other, compared
to those from GP-FA, as in Figure 2(a). For GP-SBN-FA,
the binary units of SBN, that capture co-occurrence of dictio-
nary elements, are also shown in Figure 3(b). Both GP-FA
and GP-SBN-FA effectively capture spatial dependencies by
incorporating GP priors. One interesting observation is that
the imposed SBN architecture encourages blocks of dictio-
nary elements that share similar patterns to simultaneously
turn on or turn off, as shown in Figure 3(c). Such an inter-
dictionary dependency assumption is useful when the dictio-
nary elements are heavily correlated.

All the experiments were conducted on a single machine
with two 2.7 GHz processors and 12 GB RAM. The compu-
tations of M GPs in GP-FA (or L GPs in GP-SBN-FA) were
parallelized using a GPU, rendering the running time of GP-
FA and GP-SBN-FA comparable with dHBP. For a 256×256
image, one single iteration of GP-FA takes 96 seconds, while
GP-SBN-FA takes 68 seconds (code written in Matlab and
C++). When doubling the number of MCMC iterations, the
average PSNR for our method increases by approximately

(a) (b)

Figure 2: Inpainting from GP-FA. a) Binary activations of
dictionary elements learned. Each block represents a (re-
shaped) dictionary element. Bright points indicate dictionary
activation for a given patch. First 64 dictionary elements are
shown. Average sparsity level is around 5%. b) Estimated
dictionary elements.

0.15 dB for both GP-FA and GP-SBN-FA in the inpainting
tasks, suggesting that taking more iterations may marginally
improve results.

(a) (b) (c)

Figure 3: Inpainting from GP-SBN-FA. a) Binary activations
zi b) Binary hidden units hi. c) Examples of groups of dictio-
nary elements that are simultaneously activated (upper) and
deactivated (lower) by certain hidden node.

5.2 Depth Restoration
Modern depth cameras (Zhang, 2012) capture color and depth
(RGB-D) information of a scene. However, depth maps cap-
tured by these devices are often noisy and miss pixel values,
especially around object boundaries (Lu et al., 2014). Here
we extend our Bayesian approach for the joint learning of
multi-channel images applied to RGB-D image restoration.

We extend the covariates for patch i as li ∈
{l(1)i , l

(2)
i , l

(c)
i }, where l

(c)
i = {R,G,B,D} indicates the

channel of patch i. Prior domain knowledge suggests that
depth-to-RGB correlation is lower than correlation within
RGB channels (Lu et al., 2014). To leverage such prior in-
formation, we use θdm to describe the relative depth-to-RGB
dissimilarity. We also let θcm be the characteristic length
scale of the third-dimension covariance function, kcm. The
covariance function, represented in Gram matrix, is defined
asKm =K

(1)
m ⊗K(2)

m ⊗K(c)
m . Specifically,

k(c)m (l
(c)
i , l

(c)
i ) = (σ2

f )m exp{−dist(l(c)i , l
(c)
i′ ; θdm)2/θcm} ,



dist(l
(c)
i , l

(c)
i′ ) =


0, if l

(c)
i = l

(c)
i′

θdm, if l
(c)
i = {D} and l(c)i′ ∈ {R,G,B}

1, if c 6= l
(c)
i′ and l

(c)
i , l

(c)
i′ ∈ {R,G,B}

Conceptually, when determining whether a certain dictionary
element is activated on a certain patch, the model seeks
dictionary activation structure within current channel and
across different channels. This is desirable because dictio-
nary elements are shared among all channels, thus dictionary
elements appearing in one channel are likely to appear at the
same location in other channels.

We applied our methods to the 30 images of the Middle-
bury stereo dataset (Scharstein and Szeliski, 2002; Lu et al.,
2014). The provided RGB images are noisy, and the depth-
information has a portion of missing pixels, 14% in average.
The task is to jointly recover the corrupted pixels in depth
map and to denoise RGB-D channels. We compared our
method with BPFA and dHBP. These models can directly pro-
cess RGB data by collapsing channels. However, our model
leverages the information across channels independently.

Thus, instead of extracting patches that consist of all RGB-
D channels, i.e., each patch having 8 × 8 × 4 pixels, we ex-
tract patches within each channel individually, 8 × 8 pixels,
to impose milder assumptions on the dependency structure
over channels. For fair comparison, we also tested BPFA and
dHBP under this patch extraction strategy. The learned dic-
tionary elements are shared across channels. The proposed
patch extraction approach leads to a ∼1dB improvement in
PSNR for BPFA and dHBP. We used 500 burn-in samples
for our methods, and kept 50 MCMC collection samples for
image reconstruction. For BPFA and dHBP, we use default
settings for the hyper-parameters, and perform 64 sequential
MCMC iterations with incomplete data (Zhou et al., 2009),
followed by 300 MCMC iterations.

As shown in Figure 4, the binary dictionary activations in
RGB channels are highly similar, while the depth channel
activations are relatively weakly correlated, compared with
RGB inter-channel correlations. To reflect such belief, the
parameter θd was selected greater than one.

Figure 4: Left: Binary activation pattern of R, G, B and D
channels are shown from top-left to bottom-right. Right: Re-
covered RGB image and depth-information.

A quantitative comparison of depth channel interpolation
task is shown in Figure 5. In general, GP-FA is marginally
better than GP-SBN-FA, as in about 75% images GP-FA per-
forms slightly better than GP-SBN-FA. However, GP-SBN-

FA is approximately 25% faster than GP-FA. GP-FA and
GP-SBN-FA are consistently better than dHBP and BPFA
in all images. Our approach also outperformed 5 methods
described in Lu et al. (2014) (JBF, NLM, SGF, SHF, GIF).
Low-Rank Matrix Completion, also in Lu et al. (2014), per-
forms in average 0.5dB better than our methods, as that theirs
is specifically designed for depth channel interpolation.

-2.5 -2 -1.5 -1 -0.5 0
PSNR difference w.r.t. GP-FA (dB)

GP-SBN-FA

BPFA

dHBP

GP-FA

Figure 5: Summary results of depth-information restoration.
Each method was compared with GP-FA, computing differ-
ences in PSNR for each image w.r.t. GP-FA. Boxplots sum-
marize the distribution of such differences over all images.
Red vertical lines denote median PSNR differences.

Provided that the original implementation of dHBP only
applies to 2-D spatial filters, we performed another exper-
iment on dHBP, where channel information was excluded
from the covariance function, i.e., we removed k(c)m from their
smoothing function. We verified that resulting PSNRs with
and without channel information are about the same.

One key observation about our approach is that by remov-
ing the third covariance function, k(c)m , the resulting average
PSNR decreases by about 0.5 dB. This suggests that imputa-
tion on the depth channel can effectively borrow information
from color channels via the GP prior. Another phenomenon
is that for cases where the local smoothness assumption about
the data does not hold, FA-GP and dHBP do not perform well.
We also noticed that FA-GP yields good imputation results
particularly when the image has repeated patterns. This may
be explained by the fact that GPs can capture periodic be-
haviors, whereas smoothing kernel functions decaying over
distance are likely to fail. We also found that the binary ac-
tivation patterns of RGB channels are similar to each other,
while the activate dictionary elements in the depth channel
exhibit weaker similarities with color channels.

6 Discussion
We have presented a dictionary learning model that captures
spatial correlation of dictionary activation patterns in a princi-
pled way. Binary activation vectors indicating the presence or
absence of each dictionary element are established either via
a Gaussian process field followed by logistic link functions,
or a Gaussian process field followed by an SBN; the SBN
provides computational acceleration, and often better results.
Pólya-gamma augmentation and Kronecker methods are em-
ployed for efficient MCMC inference. Experiments on real-
world images demonstrated that our approach outperforms
related Bayesian dictionary learning models for inpainting,
denoising and depth restoration tasks.
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