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Motivations

• Why Bayesian inference?

• Limited data, uncertainty estimation, model averaging...

• What is MCMC?

• MCMC simulates a Markov chain whose invariant states
follow a given (target) probability.

• Why MCMC?

• Intractable integration.

• What are some challenges in MCMC?

• Efficiency and scalability.
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Specific Aims

• The aim is to perform efficient and scalable Markov Chain
Monte Carlo (MCMC) sampling from unnormalized density.

• Common in Bayesian inference, including many biomedical
problems.

• Related publications:
• Laplacian Hamiltonian Monte Carlo, Zhang et al., In ECML,

2016.
• Towards Unifying Hamiltonian Monte Carlo and Slice

Sampling, Zhang et al., In NIPS, 2016.
• Stochastic Gradient Monomial Gamma Sampler, In ICML,

Zhang et al., 2017.
• Dynamic Poisson Factor Analysis, In ICDM, Zhang et al., 2016.
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Sampling from unnormalized density

• Suppose sampling from p(x) ∝ exp(−U(x)) is of interest,
where U(x) represent the potential energy function.

• Metropolis-Hastings (MH) achieves great success.

• However, large proposal → low acceptance ratio; small
proposal → slow move.

• Even with extensive tuning of proposals the random walk
nature often delivers inefficient mixing of the Markov chain.
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Auxiliary variable MCMC

• Toward improving the mixing efficiency, two auxiliary variable
MCMC methods were developed.

• Hamiltonian Monte Carlo (HMC) was proposed to allow
long-range movement with a high acceptance ratio, which
significantly improves mixing performance.

• Slice sampler (SS) use auxiliary slice variables for efficient
moves. These moves can be automatically adapted to match
the relative scale of the local region being sampled.
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Hamiltonian Monte Carlo

• Sampling from p(x) ∝ exp[−U(x)]
• HMC augment the density with auxiliary momentum p ∈ Rd.
K(p) = 1

2p
TM−1p is the kinetic energy. H = U(x) +K(p)

is the Hamiltonian.
• HMC iterates between two steps:

1 Move along Hamiltonian contour to propose new samples for
x, driven by the following partial differential equations (PDEs):

dx

dt
= ∇pK(p) ,

dp

dt
= −∇xU(x) . (1)

2 Sample momentum p from its marginal distribution.

xt(0), pt(0)xt(0), pt(0)

xt(⌧t), pt(⌧t)xt(⌧t), pt(⌧t)

xt+1(0), pt+1(0)xt+1(0), pt+1(0)

xx

pp
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Hamiltonian Monte Carlo

Figure: HMC algorithm
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Slice sampling

• Slice sampling augments x with a slice variable y.

• Iterates between two uniform sampling step:

Slicing: p(yt|xt) ∝ 1 , s.t. 0 < yt < f(xt)

Sampling: p(xt+1|yt) ∝ 1 , s.t.f(xt) > yt

Figure: Slice sampling
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Slice sampling (cont’d)

• Samples a joint distribution in a Gibbs sampling manner.

p(x, y) =

{
1
Z , 0 < y < f(x)
0 , otherwise

,

where Z =
∫
f(x)dx is the normalizing constant.

• The evaluation of slice interval X , {x : f(x) > y} is
typically non-trivial.

• Iterative procedures are used to adaptively capture the
boundaries [Neal (2003)].
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Unifying HMC with slice sampling

Unifying HMC and slice sampling

HMC and slice sampling share many similarity, are they connected?

• We consider generalized HMC with kinetic

K(p) = |p|1/a, a > 0 (2)

• We showed, this generalized HMC is indeed equivalent to a
generalized slice sampler as following:

Slicing:p(yt|xt) =
1

Γ(a)f(xt)
[log f(xt)− log yt]

a−1 ,

s.t. 0 < yt < f(xt) (3)

Sampling:q(xt+1|yt) =
1

Z2(yt)
[log f(xt+1)− log yt]

a−1

s.t.f(xt) > yt (4)
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Unifying HMC with slice sampling

Unifying HMC and slice sampling (Cont’d)

Figure: Generalized HMC and equivalent generalized SS. Red and blue
dashed lines denote the conditionals p(yt|xt) and q(xt+1|yt), respectively.
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Unifying HMC with slice sampling

Using Hamilton-Jacobi equation to solve the dynamic

• This connection between generalized HMC and generalized SS
is revealed by Hamilton-Jacobi equation (HJE).

• In HJE, the original system (H,x, p, τ) is transformed to
(H ′, x′, p′, τ), while the Hamilton’s equation (1) is preserved.

• The HJE is employed to find the particle position x∗ , x(τ)
for dynamic evolution duration τ .



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

Unifying HMC with slice sampling

Using Hamilton-Jacobi equation to solve the dynamic

• From HJE, the x∗ can be achieved by solving (5), with an
evolutionary time, τ .

τ =

∫ x∗

xmin

max{H − U(z), 0}a−1dz − C . (5)

where C is a constant, xmin = argminU(x)≤Hx
• (inverse transform sampling) Uniformly sampling τ and

solving x∗ from (5), is equivalent to directly sampling x∗ from
the density:

p(x∗|H) ∝ [H − U(x∗)]a−1 , s.t., H − U(x∗) ≥ 0 . (6)
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Unifying HMC with slice sampling

Intuitions about the connection

• dynamic updating step in HMC ⇔ conditional sampling step
(given slice variable) in SS.

• resampling a momentum pt in HMC ⇔ sampling a slice
variable in SS.

• Hamiltonian H ⇔ slice variable y (Ht = − log yt).

xt(0), pt(0)xt(0), pt(0)

xt(⌧t), pt(⌧t)xt(⌧t), pt(⌧t)

xt+1(0), pt+1(0)xt+1(0), pt+1(0)

xx

pp

Interesting to know.. But so what?
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Unifying HMC with slice sampling

What can we do based on this connection?

• First, this connection enables theoretical characterization of
mixing rate of HMC, which has not been well-explored.

• Second, a more efficient HMC can be derived.
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Improving stationary efficiency of HMC

Generalized HMC sampling in practice

• Generalized kinetic K(p;m, a) = |p|1/a
m , a,m > 0

• Monomial Gamma (MG) distribution:

π(p;m, a) = m−a

2Γ(a+1)e
− |p|

1/a

m .

• MG(a,m) = S ·Ga where G ∼ Gamma(a,m)

Algorithm 1 Monomial Gamma HMC (MG-HMC)

1: Input: Total sample size T , MG parameter a.
2: Output: Sample results, {x0, · · · , xT }.
3: for t = 1 to T do
4: (Sample momentum) Sample pt ∼ MonomialGamma(m, a).
5: (Hamiltonian dynamic flow) Numerically simulate dx

dt =

∇pK(p), dpdt = −∇xU(x) to get (x∗, p∗)
6: (Metropolis Hastings) accept x∗ with probability

min(1, exp(−H(x∗, p∗) +H(x, p)))
7: end for
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Improving stationary efficiency of HMC

Analyzing mixing performance [autocorrelation]

• Connection to generalized SS enables theoretical analysis for
generalized HMC.

• The following theorem states that a larger a (heavier tail
kinetics) would lead to lower autocorrelation during stationary
sampling period.

Theorem (Asymptotic autocorrelation)

For univariate target distribution, the one time lag autocorrelation
ρ(xt, xt+1) of the analytic generalized SS parameterized by a
asymptotically approaches zero when a→∞, under regularity
condition of U(x) and stationary assumption.
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Improving stationary efficiency of HMC

• Intuition: [small a] → [yt stay close to f(xt)] → [f(xt+1)
close to f(xt)].
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Improving stationary efficiency of HMC

Analyzing mixing performance [ESS and ergodicity]

• The following theorem states effective sample size (ESS)
ESS , N/(1 + 2×∑∞h=1 ρ(h)) goes to full when a→∞,
indicating approximating i.i.d. samples.

Theorem (limiting ESS)

If 1) the variance of transition kernel Varκh(·,x)(x) is bounded, 2)
uniform ergodicity can be established. When a→∞, we have,
ESS → N

• Establishing the geometric ergodicity requires

y
d

dy

∫
f(x)>y

[log f(x)− log y]a−1

to be non-increasing with y. For U(x) = xω, ω > 0, such
condition holds.
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Improving stationary efficiency of HMC

Case study

• 1D exponential distribution Exp(θ), U(x) = θx, x ≥ 0.

• After some algebra,

ρ(1) =
1

a+ 1
, ρ(h) =

1

(a+ 1)h
, ESS =

Na

a+ 2
.

• For the exponential family class of model [Roberts and
Tweedie (1996)], with potential energy
U(x) = xω, x ≥ 0, ω > 0, ρ(1) decays at a rate of O(a−1).
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Improving stationary efficiency of HMC

Additional advantage for sampling multimodal distribution

• MG-HMC with large a is particularly advantageous for
sampling multimodal distributions.

• For multimodal distribution, there exist disjoint components
with same Hamiltonian level, which HMC can not freely jump
between.

• We showed that the chance of being on a disjoint energy level
goes to zero, when a→∞.

Figure: Disjoint components associated with same Hamiltonian H.
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Improving stationary efficiency of HMC

No free lunch

• Such a performance gain does not come in free.
• First, as a gets larger, the numerical difficulty in Hamiltonian

dynamic updating is increased.
• Second, with bad initialization, the sampler may have slow

initial convergence to the true target distribution. (a > 1)

In addition, not scalable to larger datasets

Figure: Hamiltonian contours when a = 0.5 and a = 2.
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Improving stationary efficiency of HMC

Simulation studies

• 1D unimodal problems Univariate toy distributions
p(x) = 1

Z1
exp(−E(x)), s.t. x ≥ 0:

1) Exponential distribution Exp(θ), where E(x) = θx.
2) Positive-truncated Gaussian N+(0, θ), E(x) = x2.
3) Gamma distributions Gamma(r, θ), where

E(x) = −(r − 1) log x+ θx, where r = 2 and r = 3

Figure: Theoretical and empirical ρ(1) and ESS of exponential
distribution (upper) and N+ (lower).
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Improving stationary efficiency of HMC

Real-world problems

• Bayesian logistic regression with various dimensionality.
• a > 1: performance decrease quickly with increasing

dimensionality.
• a = 1: exceptional and robust in most cases.

Aus(15) Ger (25) Hea(14) Pim (8) Rip (7) Cav (87)
a = 0.5 3124 3447 3524 3434 3317 33
a = 1 4308 4353 4591 4664 4226 36
a = 2 1490 3646 4315 4424 1490 7

Table: Minimum ESS for each method in BLR experiments
(dimensionality in parenthesis)

• Independent Component Analysis (ICA)[Vigário et al.
(1998)]

min ESS Time(s) AR
a = 0.5 2677 525 0.98
a = 1 3029 517 0.97
a = 2 1534 512 0.77

Table: Results for ICA on MEG data. d = 25, N = 17730.
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Improving stationary efficiency of HMC

Take-aways

• A MCMC method that has a faster stationary mixing
theoretically v.s. HMC, yielding lower variance for sample
based estimator (with fixed sample size).

• Especially helpful when the target distribution is multimodal.

• Suffers from numeric difficulty, initial convergence and
scalablity issues.

• Future directions: higher-order numerical integrator,
geometric adaptation [Girolami and Calderhead (2011) and
Nishimura and Dunson (2016a)].
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Background on stochastic gradient MCMC

Background: Stochastic Gradient MCMC

• Sampling from f(θ) ∝ exp(−U(θ,X))

• SG-MCMC replaces U(θ,X) with an unbiased stochastic
likelihood, Ũ(θ, xτ ), evaluated from a subset of data, xτ

Ũ(θ) = − N
N ′
∑N ′

i=1 log p(xτi |θ)− log p(θ) , (7)

where {τ1, · · · , τN ′} are random subsets.
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Background on stochastic gradient MCMC

Background: Stochastic Gradient MCMC

• Driven by a continuous-time Markov stochastic process.

dΓ = V (Γ)dt+D(Γ)dW , (8)

• Γ denotes the parameters of the augmented system, e.g., p
and θ

• V (·) and D(·) are referred as drift and diffusion vectors,
respectively, and W denotes a standard Wiener process.

• To have a stationary distribution p(Γ), Fokker-Planck
equation needs to be satisfied.

∇Γ · p(Γ)V (Γ) = ∇Γ∇TΓ : [p(Γ)D(Γ)]
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Background on stochastic gradient MCMC

Background: Stochastic Gradient Hamiltonian Monte Carlo

• SGHMC(stochastic gradient Hamiltonian Monte Carlo)
[Chen, Fox, and Guestrin (2014)] use stochastic gradient

˜∇θU(θ)

• A friction term B(θ) is introduced to account for stochastic
noise.

• The SDE is given as

dθ = ∇pK(p)dt (9)

dp = − ˜∇θU(θ)dt−B(θ)∇pK(p)dt+N (0, 2B(θ)dt). (10)

• However, estimating B(θ) is difficult.
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Background on stochastic gradient MCMC

Background: Stochastic Gradient Nosé-Hoover thermostat

• SGNHT (stochastic gradient Nosé-Hoover thermostat) [Ding
et al. (2014)] use thermostat for estimating the stochastic
noise.

dθ = ∇pK(p)dt (11)

dp = − ˜∇θU(θ)dt− ξ∇pK(p)dt+N (0, 2B(θ)dt) (12)

dξ = (pT p− 1)dt. (13)
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Efficient MCMC with batch data

Improving over SGMCMC

We propose three techniques for improving efficiency of SGMCMC.

• Use generalized kinetics which delivers superior mixing rate.

• Use additional dynamic which helps convergence, and has
better ergodic properties.

• Use stochastic resampling which helps convergence.
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Efficient MCMC with batch data

More efficient kinetics

• We consider monomial Gamma (MG) kinetics K(p) = |p|1/a,
where a ≥ 1.

• Better 1) stationary mixing 2) exploring multimodal
distribution.

• However, directly applying such K(p) will not satisfy
Fokker-Planck equation.

• We use a differentiable version of MG kinetics, which maintain
same tail behavior with stiff kinetic.
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Efficient MCMC with batch data

Additional First Order Dynamics

• Augmented Hamiltonian system with kinetics and thermostat.

H = K(p) + U(θ) + F (ξ) , (14)

• SDE under this generalized SGMCMC (denote as SGMGT)

dθ =∇K(p)dt (15)

dp =− (σp + γ∇F (ξ))�∇K(p)dt (16)

−∇U(θ)dt+
√

2σpdW, (17)

dξ = γ
[
∇Kc(p)�∇K(p)−∇2K(p)

]
dt. (18)

• With numerical integrator, ∇U(θt) is large → pt+1 is large.

• For a > 1, ∇K(p) ≈ |p|1/a−1. pt+1 is large → ∇K(p) is small
→ θ won’t change.
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Efficient MCMC with batch data

Additional First Order Dynamics (Cont’d)

• Adding first-order dynamics to θ and ξ

dθ =∇Kc(p)dt−σθ∇U(θ)dt+
√

2σθdW

dp =− (σp + γ∇F (ξ))�∇Kc(p)dt

−∇U(θ)dt+
√

2σpdW,

dξ = γ
[
∇Kc(p)�∇Kc(p)−∇2Kc(p)

]
dt

−σξ∇F (ξ)dt+
√

2σξdW . (19)

• Fortunately, the first order Langevin directly compensate this
with large updating signal ∇U(θt+1)

• On the other hand, when ∇U(θ) is small, ∇K(p) would be
large.

• The proposed SDE also has better theoretic guarantee on the
existence and convergence of bounded solutions
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Efficient MCMC with batch data

Stochastic resampling

• Resample p and ξ from their marginal distribution
(∝ exp[−K(p)]; exp[−F (ξ)]) with a fixed frequency

• Move on a higher energy level is less efficient

• immediately move to lower energy levels.

• Denoting SGMGT with add. Langevin & resampling as
SGMGT-D

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

p

Hamiltonian contour
Vector field of dynamic

Higher 
energy

Lower 
energy

Marginal 
dist. of p

theta θ 0 200 400 600 800 1000
0

0.5

1

1.5

2 #10 4

Hamiltonian level
Kinetic energy level

Figure: Stochastic resampling.
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Efficient MCMC with batch data

Theoretical properties

• Quantifying how fast the sample average, φ̂T , converges to
the true posterior average, φ̄ ,

∫
φ(θ)π(θ|X)dθ, for

φ̂T , 1
T

∑T
t=1 φ(θt), where T is number of iterations.

Theorem

For the proposed SGMGT and SGMGT-D algorithms, if a fixed
stepsize h is used, we have:

Bias:
∣∣∣Eφ̂T − φ̄∣∣∣ = O (1/(Th) + h) ,

MSE: E
(
φ̂− φ̄

)2
= O

(
1/(Th) + h2

)
.
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Empirical studies

Multiple-well Synthetic Potential

• Generated samples has better stationary mixing.
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Figure: Synthetic multimodal distribution. Left: empirical distributions
for different methods. Right: traceplot for each method.
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Empirical studies

Bayesian Logistic Regression

Table: Average AUROC and median ESS. Dataset dimensionality is
indicated in parenthesis after the name of each dataset.

AUROC (D) A (15) G (25) H (14) P(8) R (7) C (87)
SGNHT 0.89 0.75 0.90 0.86 0.95 0.65

SGMGT(a=1) 0.92 0.78 0.91 0.86 0.87 0.70
SGMGT-D(a=1) 0.95 0.86 0.95 0.93 0.98 0.73

SGMGT(a=2) 0.93 0.79 0.93 0.88 0.86 0.62
SGMGT-D(a=2) 0.95 0.90 0.95 0.90 0.97 0.69

ESS (D) A (15) G (25) H (14) P(8) R (7) C (87)
SGNHT 869 941 1911 2077 1761 1873

SGMGT-D(a=1) 3147 2131 2448 4244 1494 3605
SGMGT-D(a=2) 2700 1989 2768 3430 2265 2969
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Empirical studies

Discriminative RBM
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Empirical studies

Recurrent Neural Network

Table: Test negative log-likelihood results on various datasets.

Algorithms Piano Nott Muse JSB PTB

SGLD 11.37 6.07 10.83 11.25 127.47
SGNHT 9.00 4.24 7.85 9.27 131.3
SGMGT (a=1) 7.90 4.35 8.42 8.67 120.6
SGMGT (a=2) 10.17 4.64 8.51 8.84 250.5
SGMGT-D (a=1) 7.51 3.33 7.11 8.46 113.8
SGMGT-D (a=2) 7.53 3.35 7.09 8.43 109.0
SGD 11.13 5.26 10.08 10.81 120.44
RMSprop 7.70 3.48 7.22 8.52 120.45
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Figure: Learning curves of different SG-MCMC methods.
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Empirical studies

Take-aways

Conclusion:

• Scalable MCMC inference with improved stationary mixing
efficiency.

• Remedies to alleviate practical issues with generalized HMC
kinetics.

• Better theoretical guarantees.

Future research:

• Adaptive selection of monomial parameters.

• Connection to optimization methods.
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Dynamic Poisson factor analysis for gut microbiome study
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Dynamic Poisson factor analysis for gut microbiome study

Dynamic metagenomic topic modeling

• Motivation: identify “topics” in human gut microbiota.
• Data: longitudinal measurements of human gut microbiota

over time, from 6 subjects spanning 3 different studies.
• DNA reads mapped into 33750 Operational Taxonomic Units

(OTUs). OTU defines species, represented as counts.
• 129 time-steps (non-uniform over a year).
• Challenges: Nonuniform time span; relatively large scale;

high sparsity level (85% ); abundance vs existence.
• Model: Dynamic Poisson factor model with K = 50.
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Dynamic Poisson factor analysis for gut microbiome study

Dynamic modelling for discrete time-series data

• A dynamic model for discrete time-series data.

• The model is specified by constructing a hierarchy of Poisson
factor analysis blocks.

• In experimental results on microbiome data, we identified
topics associated with disease infection and recovery, which
can be verified from domain knowledge
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Dynamic Poisson factor analysis for gut microbiome study

DPFA Model: emission

• Emission model: Poisson factor model [Henao et al. (2015)].

xnt ∼ Poisson (Ψ(θnt ◦ hnt)) , (20)

• We specify prior distributions as,

ψk ∼ Dirichlet(ηψ1M ) , θknt ∼ Gamma(rk, bθ) , (21)

hknt ∼ Bernoulli(πknt) , (22)
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Dynamic Poisson factor analysis for gut microbiome study

DPFA Model: emission

• Transition model: Bernoulli-Poisson link [Zhou (2015)]

hnt = 1 (znt > 0) , znt ∼ Poisson
(
λ̃nt

)
, (23)

λ̃nt = τ−1
nt Φ(wnt−1 ◦ hnt−1) + λ̃0 (24)

• Equivalently,

p(hnt = 1) = Bernoulli
(

1− exp(−λ̃nt)
)
,

• We specify prior distributions as,

φk ∼ Dirichlet (ηφ1K) , wknt−1 ∼ Gamma(sk, bw) , (25)

• Sensitive to existence (vs abundance); inference conveniency;



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

Dynamic Poisson factor analysis for gut microbiome study

SGMGT-embedded Gibbs Inference

• For local variables, the conditional posterior can be derived.

• Depend only on non-zero elements of xnt and znt; can be
parallelized.

• For global variables Θ , {θ,Ψ,w,Φ, λ̃0}, use SGMGT for
fast approximate inference.

π(Θ|h, z) ∝ p(Θ)p(x|h,Θ)p(h, z|Θ).

• Compared with full Gibbs approach.
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Dynamic Poisson factor analysis for gut microbiome study

Dynamic metagenomic topic modeling
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• Topic 49 (Proteobacteria) is consistent with the onset of a Salmonella infection

• Topic 38 (Firmicutes), Topic 42 (Tenericutes) is related to its recovery period.

• Topic 14 present up to the time of infection does not reappear after recovery.

• All are consistent with the findings of David et al. (2014)
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Dynamic Poisson factor analysis for gut microbiome study

Topic intensities
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Figure: Intensity heatmap for microbiome data with 50 topics (y axis).
The x axis represents time in days.
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Dynamic Poisson factor analysis for gut microbiome study

Quantitative analysis

Table: One-step ahead forecasting results on microbiome data.

Sample #OTU T DPFA(Gibbs) DPFA(SGMGT) Naive
S1 5432 321 0.880±0.008 0.866±0.011 0.761
S2 5432 189 0.755±0.044 0.613±0.067 0.378
S3 9371 30 0.989±0.003 0.951±0.005 0.790
S4 9371 30 0.964±0.006 0.948±0.009 0.760
S5 33750 332 0.943±0.003 0.932±0.007 0.835
S6 33750 129 0.975±0.002 0.960±0.005 0.843

• Same amount of Gibbs burnin and collection iterations.

• Full Gibbs(S1) 16265s (single CPU+ Titan X GPU).

• SGMGT(S1) 6149s

• SGMGT is roughly 3 times faster comparing to full Gibbs.
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Neural topic analysis for genetic infection diagnostics

Motivation & Data

• Motivation: Diagnostic approaches to accurately discriminate
between viral and bacterial etiology versus non-infectious
causes of febrile illness.

• Task: Predict 3 pathogen classes (bacterial, viral,
non-infectious) from gene expression data.

• Model: Interpretable non-linear topics that characterize key
genes/isoforms.

• Data:p = 55,688 isoforms; 21,203 genes; N = 212 subjects.
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Neural topic analysis for genetic infection diagnostics

Method overviews

• Abstract counts di ∈ RV into a topic vector hi ∈ RK .

• Differs from traditional topic modeling strategy in:

• Each topic represents a non-linear composition of vocabulary.
• Topics are selected according to supervised signal.
• A two-way Dirichlet prior is introduced for the topic loading

weight matrix, to induce sparsity, non-negativity and
non-overlapping property.

• Instead of using full-batch MCMC or MAP, we consider
SGMGT for inference.
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Neural topic analysis for genetic infection diagnostics

Two-way Dirichlet prior for neural topic loading

�
T-wise DirichletG-wise Dirichlet

Gene 1

Gene 2
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Topic 1
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…

Type

Gene level Topic level

Two-way Dirichlet prior

Phenotype

…
…

hi = σ(Wdi),

yi ∼ softmax(Uhi),

W,U ∼ pW (·), pU (·)
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Neural topic analysis for genetic infection diagnostics

Two-way Dirichlet prior for neural topic loading

• Desired properties for W : non-negative, sparse, interpretable
and exclusive.

• Consider a two-way Dirichlet prior for W ∈ RM×N

p(Wmn) ∝ AmnBmn (26)

Am ∼ Dir(α), Bn ∼ Dir(β) (27)

where Am is a row vector and Bn is a column vector.

• Sample auxiliary variables Ãm and B̃n, which has log-Gamma
distribution as prior. Consequently,

Am = softmax(Ãm), Bn = softmax(B̃n) (28)



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

Neural topic analysis for genetic infection diagnostics

Isoform composition inference

• Further consider an additional layer to learn isoform
composition for specific gene.

gi = σ(V di), (29)

hi = σ(Wgi), (30)

yi ∼ softmax(Uhi) (31)

• V is specified to have a masked two-way Dirichlet distribution.

p(Vnl) ∝ CnlDnlMnl (32)

Cn ∼ Dir(γ) (33)

Dl ∼ Dir(η) (34)

• M ∈ {0, 1}N×L indicates whether n-th isoform is from l-th
gene.
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Neural topic analysis for genetic infection diagnostics

Isoform composition inference
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Figure: Isoform composition model
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Neural topic analysis for genetic infection diagnostics

Inference details

• Omitting constant the log-likelihood objective can be written
as:

L = log p(Y |X,Θ) + (1− α)
∑
ij

logAij + (1− β)
∑
ij

logBij

+ (1− γ)
∑
ki

logCki + (1− η)
∑
ki

logDki + const. (35)

where Θ , {A,B,C,D}
• Inference via SGMGT

• For baseline we consider group lasso method [Friedman,
Hastie, and Tibshirani (2010)]. Each column in the weight
matrix is considered as one group.
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Neural topic analysis for genetic infection diagnostics

Results
Prediction

• Testing error rate via 10-fold cross validation. 3 topics. For
SGMGT we collect 500 posterior samples for testing.

Model Group Lasso Ours (Two-way Dir)

Gene-level model 0.187±0.050 0.162±0.083
Isoform -level model 0.177 ± 0.066 0.149±0.075

Table: Error rate on testset with 10 fold cross-validation

• Traceplot of weight parameters.
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Neural topic analysis for genetic infection diagnostics

Results
Non-overlapping sparse topic loading

• Two-way Dirichlet prior shows non-negative, non-overlapping
and sparse topic intensity.

0 1 2

0

2000

4000

6000

8000

10000

Group lasso

0

0.04

0.08

0 1 2

0

2000

4000

6000

8000

10000

Two-way Dirichlet

0

0.0015

0.003

0.05 0.00 0.050

25000

50000

75000

100000

125000

150000
Group lasso

0.000 0.001 0.002 0.0030

25000

50000

75000

100000

125000

150000

Two-way Dirichlet



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

Neural topic analysis for genetic infection diagnostics

Results
Interpretable topic inference

• Identified 3 topics correspond to 3 infection types.
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Figure: Topic intensity level for each group of infection type
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Conclusions and future works

• Conclusions:
• Unifying HMC and SS in a theoretical perspective.
• Proposing MG-HMC with better stationary mixing.
• Proposing Scalable MCMC inference to remedy practical issues

of previous method.
• Discussing scalable Bayesian inference to many biomedical

problem.

• Future works:
• Developing better numerical integrator; adaptive selection of

hyper-parameters [Nishimura and Dunson (2016b)].
• Developing geometric adaptation on Riemannian manifold for

higher dimensional cases.
• Potential for discrete HMC sampling[Nishimura, Dunson, and

Lu (2017)].



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

Acknowledgment

• My advisor: Dr. Lawrence Carin

• My committees: Dr. Katherine Heller, Dr. Scott Schmidler,
Dr. Alexander Hartemink, Dr. David Dunson

• My collaborators: Dr. Ricardo Henao, Dr. Changyou Chen,
Zhe Gan, Dr. Xiangyu Wang, Kai Fan, Dinghan Shen, Guoyin
Wang, Jianqiao Li, Siyang Yuan, Chunyuan Li, Yunchen Pu,
Wenlin Wang, Dr. Jonathan Mattingly, Dr. Jianfeng Lu,
Liqun Chen, Shuyang Dai ...



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

Thank You!



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

References I

Chen, Tianqi, Emily B Fox, and Carlos Guestrin (2014).
“Stochastic Gradient Hamiltonian Monte Carlo”. In: ArXiv.

David, Lawrence A et al. (2014). “Host lifestyle affects human
microbiota on daily timescales”. In: Genome Biology 15.7.

Ding, Nan et al. (2014). “Bayesian sampling using stochastic
gradient thermostats”. In: Neural Information Processing
Systems.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2010).
“A note on the group lasso and a sparse group lasso”. In: arXiv
preprint arXiv:1001.0736.

Girolami, Mark and Ben Calderhead (2011). “Riemann manifold
Langevin and Hamiltonian Monte Carlo methods”. In: Journal
of the Royal Statistical Society: Series B (Statistical
Methodology) 73.2.



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

References II

Henao, Ricardo et al. (2015). “Deep Poisson Factor Modeling”.
In: Neural Information Processing Systems.

Neal, Radford M (2003). “Slice sampling”. In: Annals of statistics.

Nishimura, Akihiko and David Dunson (2016a). “Geometrically
Tempered Hamiltonian Monte Carlo”. In: arXiv preprint
arXiv:1604.00872.

– (2016b). “Variable length trajectory compressible hybrid Monte
Carlo”. In: arXiv preprint arXiv:1604.00889.

Nishimura, Akihiko, David Dunson, and Jianfeng Lu (2017).
“Discontinuous Hamiltonian Monte Carlo for sampling discrete
parameters”. In: arXiv preprint arXiv:1705.08510.

Roberts, Gareth O and Richard L Tweedie (1996). “Exponential
convergence of Langevin distributions and their discrete
approximations”. In: Bernoulli.



Preliminaries Towards unifying HMC and SS Scalable and efficient MCMC inference Biomedical applications Conclusion Acknowledgements References

References III

Vigário, Ricardo et al. (1998). “Independent component analysis
for identification of artifacts in magnetoencephalographic
recordings”. In: NIPS.

Zhou, Mingyuan (2015). “Infinite Edge Partition Models for
Overlapping Community Detection and Link Prediction”. In:
Artificial Intelligence and Statistics Conference.


	Preliminaries
	Towards unifying HMC and SS
	Unifying HMC with slice sampling
	Improving stationary efficiency of HMC

	Scalable and efficient MCMC inference
	Background on stochastic gradient MCMC
	Efficient MCMC with batch data
	Empirical studies

	Biomedical applications
	Dynamic Poisson factor analysis for gut microbiome study
	Neural topic analysis for genetic infection diagnostics

	Conclusion
	Acknowledgements

