
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Scalable Variational Inference for Non-linear Beta Process Factor Analysis

Abstract
We propose a non-linear extension to factor anal-
ysis with beta process priors for improved data
representation ability. This non-linear Beta Pro-
cess Factor Analysis (nBPFA) allows data to be
represented as a non-linear transformation of a
standard sparse factor decomposition. We de-
velop a scalable variational inference framework,
which builds upon the ideas of the variational
auto-encoder, by allowing latent variables of the
model to be sparse. Our framework can be
readily used for real-valued, binary and count
data. We show theoretically and with experi-
ments that our training scheme, with additive or
multiplicative noise on observations, improves
performance and prevents overfitting. We bench-
mark our algorithms on image and text datasets.
We demonstrate faster convergence rates and
competitive performance compared to standard
gradient-based approaches.

1. Introduction
Sparse factor analysis is a well-known statistical method
used to describe the correlation structure multivariate data,
in terms of a potentially small set of K latent factors, such
that each observation is allowed to explained by a combina-
tion of up to K of these factors. Beta Process Factor Analy-
sis (BPFA) is a Bayesian nonparametric approach to sparse
factor analysis, where factor memberships are modeled via
a beta process prior (Paisley & Carin, 2009). The Beta pro-
cesses (Hjort, 1990), and related priors for mixed mem-
bership, such as the Indian Buffet Process (IBP) (Ghahra-
mani & Griffiths, 2005), are appealing because they pro-
vide a principled way of estimating K, which is usually
unknown. The Beta process is also a fully-Bayesian conju-
gate prior, which in the case of BPFA, allows for analytic
posterior calculation and fast variational inference (Paisley
et al., 2010; Carin et al., 2011).

Though BPFA avoids the need to set K a priori and allows
for efficient inference, it is limited to second-oder statistics,

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

i.e., linear combinations of Gaussian distributions (factors).
We aim to improve the representation power of BPFA by
allowing non-linear combinations of Gaussian factors. In
principle, non-linear BPFA will be more flexible in its abil-
ity to explain the data because unlike traditional BPFA, is
not restricted to only capture linear correlations.

A key problem of non-linear factor analysis models in gen-
eral is that they are usually non-conjugate, which makes
inference difficult and computationally expensive, if not
prohibitive. Consequently, fast inference approaches for
BPFA such as variational EM (Paisley & Carin, 2009), vari-
ational Bayes (Carin et al., 2011) and stochastic variational
inference (Shah et al., 2015), can no longer be applied.
The Variational Auto-Encoder (VAE) is a scalable stochas-
tic variational inference and learning framework that effi-
ciently approximates the posterior of the latent variables
of a model using a recognition model (Kingma & Welling,
2013). In this framework, a Stochastic Gradient Variational
Bayes (SGVB) estimator is used to optimize the recogni-
tion model, by minimizing the KL divergence between the
prior imposed on the latent variables and the recognition
model. Here, we extend VAE to allow latent variables to
have a spike and slab prior, represented as an element-wise
product of a continuous variable (Gaussian) and a binary
vector drawn from a beta process prior. The new frame-
work, termed Variational Sparse Auto-Encoder (VSAE),
allows us to specify a non-linear version of BPFA in which
both, the generative and the recognition models are built
via multi-layer perceptrons (MLPs) (Hornik et al., 1989).

We also propose a more robust SGVB estimator, specifi-
cally designed for denoising and imputation, two tasks tra-
ditionally addressed by factor analysis models. It is un-
derstood that the VAE framework is advantageous for im-
putation purposes (Rezende et al., 2014). Here we go one
step further by adding stochasticity to the gradient estima-
tion in SGVB, via Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Teh, 2011), in order to improve denois-
ing ability (Bengio et al., 2013). In particular, we leverage
the data corruption technique of Maaten et al. (2013); Wa-
ger et al. (2013); Chen et al. (2014), which we demonstrate
is equivalent to impose noise on the gradients in the SGVB
formulation. Further, we justify the asymptotic properties
of the robust SGVB for noise corrupted inputs.

The contributions of our work are: (i) We propose a non-

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Scalable Non-linear Beta Process Factor Analysis

linear version of BPFA; (ii) We introduce a variational
sparse auto-encoder framework for sparse latent variables;
(iii) We propose a robust SGVB estimator based on data
corruption techniques, with theoretical justification; (iv)
Experiments on real image and text data demonstrate fast
convergence rates and competitive performance w.r.t stan-
dard gradient-based approaches.

2. Background
Sparse factor analysis explains a data vector, x

i

2 RD,
in terms of Gaussian latent variable, z

i

,v

i

2 RK , binary
factor indicators, v

i

2 {0, 1}K , and weight matrix (factor
loadings), W 2 RD⇥K , with K factors as

x

i

= W(z

i

� v

i

) + ✏
i

, ✏
i

⇠ N (0, �

�1
I

D

) , (1)

where � is represents the element-wise product, z
i

follows
a zero-mean Gaussian distribution with isotropic covari-
ance matrix, denoted �

2
z

I

K

. Elements of the weight matrix,
W, are Gaussian with zero-mean. Observation noise, ✏

i

, is
zero-mean Gaussian with covariance ��1

I

D

. The prior dis-
tribution for each element of v is v

ik

⇠ Ber(⇠
k

), Bernoulli
distributed, with ⇠

k

⇠ Beta(a/K, b(K�1)/K). This spec-
ification for sparse factor analysis has the advantage of be-
ing fully local-conjugate, thus conditional posteriors can be
evaluated analytically (Paisley & Carin, 2009).

In the limit, when K ! 1, the number of non-zero
elements of v

i

is a random variable with distribution
Poisson(a/b), and v

i

follows a beta process. Under these
conditions, the model in (1) is called Beta Process Factor
Analysis (BPFA) (Paisley & Carin, 2009).

Denote the two-parameter beta process as BP(a, b,H0),
where a, b > 0 and H0 is the base measure. The BP can be
represented as follows (Zhou et al., 2009),

H(v) =

K

X

k=1

⇠

k

�

v

k

(v) ,

⇠

k

= Beta(a/K, b(K � 1)/K) , v

k

⇠ H0 ,

(2)

where H(v) is a well-defined probability measure for the
vector v, of length K, as K ! 1 (Hjort, 1990). The
generative process in (2) can be extended to binary matrices
using a two-step process akin to the Indian buffet process
(Thibaux & Jordan, 2007).

Performing inference directly from the infinite beta process
is difficult and computationally expensive. In practice, a fi-
nite approximation is used instead, where K is set to a large
but finite number, similar to truncated approximations for
Dirichlet processes (Blei & Jordan, 2004). In such case, the
local conjugacy of the specification in (1) can be still lever-
aged, and efficient inference can be carried out via varia-
tional methods (Paisley et al., 2010; Carin et al., 2011).

3. Non-linear BPFA
In this section, we propose a non-linear version of BPFA
by imposing a non-linear transformation f(·), on the linear
decomposition in (1) as

x ⇠ N (µ
x

, diag(�
x

)) , (3)

where µ
x

= f(W(z � v)) and f(·) is an invertible map-
ping, e.g., sigmoid, hyperbolic tangent or their composi-
tion. The invertibility assumption can be relaxed in prac-
tice. Multi-layer perceptrons (MLPs) are commonly used
non-linear mappings, however, they may not be invertible
for some activations such as the rectified-linear function
max{0, u}. An invertible alternative to the rectified-linear
used in MLPs is log(1 + e

u

). Note that we have marginal-
ized out ✏

i

from (1) and we have replaced the isotropic
covariance, ��1

I

D

from traditional BPFA, by a diagonal
with elements specified in �

x

. Details of µ
x

and �
x

are
provided in the next section.

The efficient variational EM algorithm of Paisley & Carin
(2009) cannot be used for (3) because the conditional pos-
terior of W and z are no longer conjugate; at least for most
choices of the function f(·). However, we can still leverage
the finite approximation of the beta process to introduce a
recognition model. In the following, we develop a stochas-
tic variational inference framework to jointly learn the pa-
rameters of the generative model in (3) and a recognition
network for latent variables z and v, provided that v has a
beta prior.

3.1. Scalable Variational Inference

We construct our stochastic variational inference frame-
work based upon ideas from the variational auto-encoder
(VAE). We start by considering the generative model with
joint distribution written concisely as p✓(x, z,v, ⇠), where
⇠ = (⇠1, ⇠2, ..., ⇠K) is the truncated beta process in (2).
The generative model is parameterized then by ✓ (includ-
ing W) from (3). Using Bayes’ rule, we can factorize the
joint of the generative model as p(⇠|v)p(x|z,v)p(z)p(v).
We also propose a recognition model in the form of a varia-
tional distribution for the posterior of the latent variables as
q (z,v, ⇠|x) = q(z|x)q(⇠|v)q(v|x), parameterized by .
If we further assume that q(⇠|v) takes the form of the (un-
known) true posterior p(⇠|v), the lower bound, L(✓, ;x),
can be simplified as follows

log p(x) � E
q



log p✓(x, z,v, ⇠)

log q (z,v, ⇠|x)

�

, L(✓, ;x)

� E
q [log p(x|z,v)]

�D

KL

(q(z|x)||p(z))�D

KL

(q(v|x)||p(v)) ,

where p(v

k

) ⇠ Ber
⇣

a

a+b(K�1)

⌘

, after marginalizing out
⇠, with p(v

k

|⇠
k

) ⇠ Ber(⇠
k

) and ⇠

k

as in (2). We can further

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Scalable Non-linear Beta Process Factor Analysis

π�

x�

v� z� μz� σz�

he�

hd�

μx�

W4,$b4$$$$$$$$$$$$$$$$$$$W5,$b��

W,$b�

W1,$b1$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$�W2,$b2$$

W0,$b0�

W3,$b3�
~$�~�

Gaussian�

Bernoulli�
!�

Recogni:on$Model�

Genera:ve$Model�

σx�

Gaussian�

x� ~$�

(a)

0 0.2 0.4 0.6 0.8 1
π

0

0.5

1

1.5

2

2.5

3

3.5

4

K
L
 D

iv
e
rg

e
n
ce

ρ=0.1, D(π||ρ)
ρ=0.1, D(ρ||π)
ρ=0.3, D(π||ρ)
ρ=0.3, D(ρ||π)
ρ=0.5, D(π||ρ)
ρ=0.5, D(ρ||π)

(b)

Figure 1. (a) VSAE network for continuous input: ⇠ means
sampling, where v ⇠ Ber(⇡), z ⇠ N (µ

z

, diag(�2
z

)) and
x ⇠ N (µ

x

, diag(�2
x

)); each ! means an element-wise map-
ping g(W

i

s + b

i

), where g can be either nonlinear or linear and
s is the source. h

e

and h

d

are the shared hidden layers in gener-
ative mode and recognition model respectively. (b) Comparison
between different sparse penalties.

denote ⇢ =

a

a+b(K�1) . The sparse prior imposed on v, via
v

k

⇠ Ber(⇢), is controlled by tuning parameters a and b.

For the recognition model, the proposed variational distri-
bution is restricted to be in a family of distributions of sim-
pler form than true posterior, but preferably flexible enough
to contain the true posterior as an instance. In particular, we
let q(z|x) follow a N (µ

z

, diag(�
z

)), rather than the zero-
mean isotropic Gaussian distribution as in standard BPFA.
Further, q(v|x) follows Ber(⇡

e

), in a slight abuse of nota-
tion, meaning a product of K independent Bernoulli distri-
butions with parameters in ⇡

e

. These specifications guar-
antee that that the true posterior belongs to the same fam-
ily as the variational distribution. To allow for flexibility,
we use the trick of embedding parameters via multi-layer
perceptrons, i.e., µ

z

= MLP1(x), �z

= MLP2(x) and
⇡
e

= MLP3(x), where

MLP
j

(x) = g(W

j

h

e

+ b

j

), h

e

= tanh(W0x+ b0), (4)

where h
e

is a shared hidden layer for MLP{1,2,3}. Note that
the map x! (v, z) as specified above defines an encoding
process, whereas (3) defines a decoding process. In fact,
we can use a MLP formulation for (3), particularly, we let

µ
x

= MLP4(z� v) and �
x

= MLP5(z� v), both with a
shared hidden decoding layer, h

d

= tanh(W(z� v) + b).
As a result, parameters and ✓ are weights and biases
of all MLPs, {1, 2, 3} for the encoder and {4, 5} for the
decoder. We call this framework variational sparse auto-
encoder (VSAE).

Compared to standard VAE (Kingma & Welling, 2013), our
recognition model has two additional components

⇡
e

= sigmoid(W3he

+ b3) , v ⇠ Ber(⇡
e

) ,

where h

e

is shared and defined in (4) and recall that z
z � v. The compete model, which can be seen as a deep
neural network, is illustrated in Figure 1. The input and
the output layers have D nodes since x

i

2 RD, and the
middle layer latent layer has two variables v and z, with
K nodes each. For real-valued inputs, we have two out-
put layers as µ

x

and �
x

, respectively. The number of
nodes on hidden encoder and decoder layers is set empir-
ically. For backpropagation purposes, the difference be-
tween VAE and VSAE lower bounds, using a factorized
variational distribution for v and z is

D

KL

(q(z|x)||p(z)) +D

KL

(q(v|x)||p(v))
=

1
2

P

K

k=1(µ
2
k

+ �

2
k

� 1� 2 log �

k

)

+

P

K

k=1

⇣

⇡

k

log

⇡

k

⇢

+ (1� ⇡

k

) log

1�⇡

k

1�⇢

⌘

,

where µ

k

, �
k

and ⇡

k

are elements of µ
x

, �
x

and ⇡
e

, re-
spectively. The second KL divergence term is imposed to
control the sparsity of latent variable v. Note that the KL
divergence of a Bernoulli distribution reaches its minimum
of 0 if ⇡

i

= ⇢. As a result, when the parameter of the sparse
prior, ⇢, becomes smaller, the model will become sparser.
In fact, the sparsity constraint in standard auto-encoders
can be formulated as D

KL

(p(v)||q (v|x)) (Ngiam et al.,
2011). However, when ⇡ approaches 0 or 1, this regular-
ization term may diverge to infinity (see Figure 1(b)), thus
requiring an additional tuning weight, �, to act as a trade-
off between the magnitude of the KL divergence and the
log-likelihood expectation, E

q [log p(x|z,v)]. Instead, the
KL divergence term in our lower bound can reach its max-
imum either at log(1/⇢) or log(1/(1� ⇢)). As a result, the
additional tuning parameter is not necessary.

3.2. Continuous Approximation

In back-propagation inference, Monte Carlo integration is
required to calculate the expectation E

q [log p(x|z,v)].
Due to the nice property of location scale-families, the
variance of integration with respect to a latent Gaussian
variable, z, can be reduced by the reparameterization trick
(Kingma & Welling, 2013). In fact, even one draw from
the standard Gaussian distribution is sufficient to approx-
imate the expectation with an exponential decay error,

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Scalable Non-linear Beta Process Factor Analysis

under some mild conditions (Fan et al., 2015). How-
ever, as to the latent Bernoulli variable, v, one draw from
the Bernoulli distribution using Monte Carlo integration
may result in a very large bias, which in turn, will de-
crease the convergence rate. The reason is, E[f(v)] =

P

v2{0,1}K

Q

K

k=1 p
v

k

k

(1� p

k

)

1�v

k

f(v) includes the sum-
mation of 2

K terms, and one draw is only one of them.
Mnih & Gregor (2014) applied the control variate trick of
reinforcement learning to reduce the variance. In this pa-
per, we can circumvent this variance reduction need, by
directly setting ⇡

e

2 [0, 1]

K , as the latent variable during
stochastic back-propagation, in order to avoid drawing too
many samples to achieve the intended accuracy. This con-
tinuous approximation for binary variables does not harm
the regularization term or the KL divergence in the objec-
tive lower bound. Meanwhile, it reduces v to determin-
istic back-propagation while other latent variables remain
the same. Consequently, significant less computation is
required compared with the control variate trick or multi-
sample Monte Carlo integration.

Any stochastic optimization for variational inference is al-
lowed in our framework, so the algorithm is scalable for
large datasets. Uncertainty of W in (3) accounted for in
BPFA is omitted here for simplicity. Correspondingly, only
the weight matrix associated with z�v in our model needs
uncertainty, e.g., W5 in Figure 1(a). However, the tech-
nique in (Blundell et al., 2015; Kingma et al., 2015) of in-
ferring weight uncertainty in neural networks can straight-
forwardly applied to all weight matrices, which is not the
specific topic of our paper. In addition, we can simplify
VSAE by removing the hidden encoder and decoder lay-
ers of VSAE, h

e

and h

d

, thus yielding a simpler version
of non-linear BPFA. Further, in the next section, we will
discuss how we implement VSAE with a noisy training
method to make the factor analysis model faster and more
robust for denoising and imputation tasks.

4. Noisy VSAE
4.1. Data Corruption

Unlike traditional VAE, one of the advantages of VSAE is
that it controls the activation of latent variables for different
inputs. In principle, this setting will make the model more
flexible to represent more data. In this section, we design a
noisy training scheme to further strengthen this ability. In
a nutshell, our stochastic optimization algorithm resembles
stochastic gradient Langevin dynamics (SGLD).

4.1.1. STOCHASTICITY FROM DATA NOISE

Maximizing the the lower bound of an auto-encoder is
equivalent to optimize a function L(✓, ;x, t), where the
target t equals input x. If we consider L(✓, ; ˜x,x), where

the input is noised but the target remains unchanged, we
can analyze how to impose stochasticity to the estimated
gradient from corrupted input. Particularly, we consider
two simple corruption settings: additive and multiplicative
Gaussian noise, which is a fairly common practice in recent
machine learning literature (Srivastava et al., 2014; Kingma
et al., 2015). We will show that data noise is equivalent to
adding a preconditioned adjustment to the gradient of the
parameters.

Denote � = {✓, } and g(�,x, t), as the first order
derivative of the lower bound w.r.t. �. For additive noise,
we assume �x ⇠ N (0,↵I

D

). For multiplicative noise,
the corrupted input ˜x = x � �, where � ⇠ N (1,↵I

D

).
Thus, �x = x � (� � 1), and �x ⇠ N (0,↵⌃

x

), where
⌃

x

= diag(x�x). In the dropout setting (Srivastava et al.,
2014) with drop rate �, ↵ can be set to �/(1� �).

Consider the Taylor expansion of vector-valued the func-
tion g : RD ! RP , w.r.t. input variable x,

g(�,x+�x, t) = g(�,x, t) + J(x)�x+ o(k�xk), (5)

where J(x) is Fréchet derivative or Jacobian matrix with
dimension P ⇥D, k · k represents the Euclidean norm and
o(·) is an infinitesimal. In fact, the linear map described
by J is the best linear approximation of g near the point
x. For both additive and multiplicative noise, the resulting
noise imposed on the gradient by a linear transformation
is also Gaussian noise, but with a new covariance matrix
⌃ = ↵JJ

> or ↵J⌃
x

J

>. However, like back-propagation
for deep neural networks, the error between the output and
the target has a less significant influence on the parame-
ter gradient of lower layers; similarly, the corruption intro-
duced here will decrease and have less impact on the top
layers. Thus, dropout is usually applied to each layer sepa-
rately.

4.1.2. CONNECTION TO SGLD

Equation (5) indicates data noise can be transferred to gra-
dient noise. However, the purpose of SGLD is to follow
the Markov chain Monte Carlo (MCMC) approach to cap-
ture uncertainty, by directly adding a zero-mean Gaussian
noise with decreasing variance, to a standard SGD update:
��

t

=

✏

t

2

⇣

r log p(�) + N

B

P

B

i=1r log p(x

t

i

|�)
⌘

+ ⌘
t

where ⌘
t

⇠ N (0, ✏

t

I

P

) and B is the mini-batch size. Note
that another two sources of stochasticity exist: one is the
rescaled gradient estimated from the mini-batch data; the
other one is the Langevin dynamics from injected Gaussian
noise. In practice, a variety of adaptive learning rate opti-
mization methods have been proposed, especially in the op-
timization community (Duchi et al., 2011; Kingma & Ba,
2014). For the rationale of the magnitude of additive Gaus-
sian noise, an intensive analysis of the consistency and fluc-
tuations of SGLD under verifiable assumptions implies that

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Scalable Non-linear Beta Process Factor Analysis

its asymptotic bias and variance can be rigorously charac-
terized by an explicit function of the learning rate sequence
(Teh et al., 2014). The lower bound L(�;x, t) of VSAE
can also be decomposed to two parts. The first term is the
expectation of log p(t|z,v,�) dependent on the target. The
second one is the KL divergence term between the posterior
and prior of latent variables. Like in SLGD, we can also
add the parameter prior p(�). Therefore, we will provide a
unifying framework to demonstrate how the three sources
of stochasticity can affect the gradient based algorithm.

4.1.3. CONSISTENCY AND LOCAL-OPTIMALITY

As previously discussed, multiplicative noise can be es-
sentially considered as additive noise with adaptive vari-
ance, dependent on each evaluated data point. Thus, we
only explore the convergence properties in the case of ad-
ditive noise. In principle, each element function of g is
required to belong to a 2nd order smoothness function C

2
L

(Van Der Vaart & Wellner, 1996) w.r.t. x, where the class of
C

2
L

has uniformly L-bounded partial derivatives up to order
2, namely, the 2nd order Hölder continuous partial deriva-
tives. For clarity, denote the average negative lower bound
as L

an

(�) = � 1
N

⇣

log p(�) +
P

N

i=1 L(�;xi

, t

i

)

⌘

. One
can minimize this objective function to obtain an estimate
of �. For L

an

, we only need to assume it is locally convex
(i.e., convex in a bounded region, {� : k���1k2  2R})
to guarantee the exist of local optima. In fact, for 1st or-
der gradient based algorithms, it is not necessary to assume
that L

an

is twice differentiable; instead we merely consider
a weaker condition: r�Lan

is �-Lipschitz, i.e., L
an

is �-
smoothness.

Theorem 1 (Local Convergence Rate). Assume L
an

(�) is
�-smoothness local convex function w.r.t �; g(�,x, t) 2
C

2
L

w.r.t x; stochastic gradient oracle on each data
point variance is bounded by C. Then, by set-
ting input x corrupted with additive Gaussian noise
N (0,↵I

D

), mini-batch size B and step-size ✏

t

=

4
N

1

�+
q

t(C+L

2
D+o(D↵)+2B/N)

2RB

, SGLD update satisfies

E
"

L
an

1

T

T

X

t=1

�
t+1

!#

 1

T

T

X

t=1

E [L
an

(�
t+1)]

 L
an

(�⇤
) + o

⇣p
D↵

⌘

�

�

�

�

�

1

T

T

X

t=1

E[�
t

� �⇤
]

�

�

�

�

�

+

R�

T

+

r

2R(C + L

2
D + o(D↵) + 2B/N)

TB

.

(6)

where �⇤ is the local optimum.

Intuitively, Theorem 1 (proof and relevant definitions pro-
vided in the supplements) characterizes the behavior when
the algorithm has already moved into a local mode, and in-

dicates that the model bias induced by averaging the sam-
pled parameter can be bounded by averaging models, and
further bounded by three monotonically decreasing terms
w.r.t sample size. The first term is associated with the
bias of parameter posterior mean scaled by an infinitesimal
o

⇣p
D↵

⌘

, which is controlled by the standard deviation
of data corruption noise. Note that if no data corruption
is introduced in the algorithm, this term will vanish com-
pletely, thus degenerating to the convergence rate of stan-
dard SGLD. In addition, the second and third terms dimin-
ish with order O

�

1
T

�

and O
⇣

1p
TB

⌘

, respectively.

In the case of multiplicative noise, we can obtain a simi-
lar convergence bound, by defining an additive noise with
bounded variance,

p
2R↵, and substituting for the ↵ within

inequality (6). If we reformulate to the gradient update in
SGLD, it can be viewed as adding a zero-mean Gaussian
noise, N

⇣

0, ✏

t

I+

N✏

t

2B

P

B

i=1 J(xti

)⌃

x

ti

J(x

ti

)

>
⌘

. How-
ever, it is unnecessary to add this noise in the gradient up-
date, since the covariance matrix is not diagonal. Sampling
from such a distribution with less numerical error usually
requires Cholesky decomposition, while directly adding
noise to input data takes much less computation.

4.1.4. CONSISTENCY WITH MOVING AVERAGE

In addition to modifying the standard SGLD, in this section
we further discuss how the momentum method (Polyak,
1964; Nesterov, 1983) is influenced with noisy training by
exploring its theoretical properties, which is scarcely dis-
cussed in previous literature, to the best of our knowledge.
We can readily formulate a standard momentum (SM) or
Nesterov’s Acceleration (NA) update for SGLD as follows,

SM : p

t+1 = µ

t

p

t

� ✏

0
t

rL
an

(�
t

) + ⌘
t

, (7)
NA : p

t+1 = µ

t

p

t

� ✏

0
t

rL
an

(�
t

+ µ

t

p

t

) + ⌘
t

, (8)
�

t+1 = �
t

+ p

t+1 , (9)

where ✏

0
t

= N✏

t

/2. From the perspective of implementa-
tion, the two-step update is convenient. However, we can
rewrite as a one-step second order moving average. Note
that the second order here refers to the parlance in autore-
gressive (AR) models literature. The motivation for intro-
ducing momentum is to average previous samples with mi-
nor weights. More concretely, we have

�
t+1 = �

t

+ µ

t

(�
t

� �
t�1)� ✏

0
t

rL
an

(�
t

) + ⌘
t

, (10)

For NA, we only need to changerL
an

(�
t

) torL
an

(�
t

+

µ

t

p

t

). Intuitively, the momentum method plays the role
of the inertia in the Newton’s laws of motion. The next
direction for gradient descent takes the acceleration veloc-
ity between previous two steps into account, i.e., �t+�t

��
t

�t

,
where the time interval �t = 1 in our case. This means the

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Scalable Non-linear Beta Process Factor Analysis

Algorithm 1 Training with raw and noisy data.
1: for t = 1, 2, . . . do
2: x

B/2
b=1 Randomly draw B/2 data points.

3: ˜

x

B/2
b=1 x

B/2
b=1 with injected noise.

4: Set input xB/2
b=1 , ˜x

B/2
b=1 and target xB/2

b=1 ,x
B/2
b=1

5: Optimize the lower bound of the VSAE.
6: end for

newly sampled parameters depend on three key factors: the
original direction computed from negative gradient, the in-
ertia direction from previous history, and the random direc-
tion from injected Gaussian noise. Geometrically, from the
vertex �

t

, we can follow a parallelogram law with the first
two directions of the length ✏

t

and µ

t

respectively; subse-
quently, a small perturbation is added. We show a figure in
the supplements that intuitively illustrates that the Langevin
dynamics can explore larger parameter space, thus poten-
tially mitigating the overfitting problem, which is one of
most appealing advantages of noisy training. Under minor
modification of the assumptions in Theorem 1, we obtain a
similar result.
Theorem 2. Under the same assumptions of Theorem 1,
except for relaxing the smoothness condition to adaptive
smoothness, i.e., for the current �

t

, the function satisfies
1
✏

0
t

-smoothness in the region {� : k� � �
t

k  ✏

0
t

}, SGLD
with update (8) and (9) satisfies

E [L
an

(�

T

)]  L
an

(�⇤
) +

4R sup

t<T

�

t

T

2

+

r

8R(C + 2B/N) sup

t<T

�

t

TB

✓

4

3

+

1

2T

+

1

6T

2

◆

.

where ✏

t

=

2
N

1

�

t

+

r
t

3(C+2B/N)
2RB sup

i<t

�

t

.

Note that R can be replaced by k�1 � �⇤k2/2. Due to the
stochasticity from the mini-batch and Langevin dynamics,
the convergence rate is deteriorated by a term O

⇣

1p
TB

⌘

;
however, this result is comparable with the optimization
algorithm, ADAM (Kingma & Ba, 2014), whose conver-
gence rate is proved to be O

⇣

1p
T

⌘

, within the online learn-
ing framework and thus equivalent to our result without
mini-batch size in the denominator. Further, we include
the analysis connecting to HMC (Neal et al., 2011) in sup-
plementary materials.

5. Experiments
We explore how different training approaches can affect the
performance of convergence rates, overfitting and denois-
ing. In addition, we apply the VSAE framework to topic
modeling.

200 400 600 800 1000
Epochs

-112

-110

-108

-106

-104

-102

-100

-98

V
a
ri
a
tio

n
a
l l

o
w

e
r

b
o
u
n
d

SGD
SGLD
SGLD w/ add. noise
SGLD w/ mul. noise
SGD (train)
SGLD (train)
SGLD w/ add. noise (train)
SGLD w/ mul. noise (train)

(a) Lower Bound

0 200 400 600 800 1000
Epochs

2.5

2

1.5

1

0.5

L
o
w

e
r

b
o
u
n
d
 d

iff
e
re

n
t

SGD
SGLD
SGLD w/ add. noise
SGLD w/ mul. noise

(b) Underfitting

Figure 2. Performance comparison on MNIST data. In (a), solid
and dashed lines are test and train lower bounds, respectively. (b)
illustrates testing and training lower bound differences.

5.1. Practical Algorithm

We first specify a training algorithm for noisy data. The
idea is to double the training set size using raw and noise
corrupted data. In each iteration, we sample a mini-batch
of data points X with size B/2, and inject some appropri-
ate noise to obtain ˜

X. Then, we feed the input {X,

˜

X} to
the auto-encoder using {X,X} as target. This is similar
to the approach discussed in the previous section, except
that input data points are not all corrupted. This training
framework is illustrated in Algorithm 1.

Different SGLD algorithms are considered. For compar-
ison, we implemented algorithms in (Kingma & Welling,
2013; Fan et al., 2015), referred here as SGD and Hessian-
free SVI (HFSVI). Results on two well-known image
datasets, MNIST and Frey faces, are shown in Table 1 and
Figure 2 (all algorithms are tuned for performance with
and without momentum update). Since HFSVI converges
quickly (within 50 epochs), we do not include it in the con-
vergence rate comparison of 1st order algorithms. How-
ever, is clear that HFSVI suffers from severe overfitting,
even when we use a mini-batch of size 1000 (a mini-batch
of size 100 performs worse). Note that 2nd order algo-
rithms often require large batch size (Martens, 2010). For
all 1st order algorithms, we use a mini-batch size of 100.
The settings for MNIST and Frey faces data are d

h

= 400

and d

h

= 200, respectively, while d

z

= 200 and ⇢ = 0.1

in both cases.

For MNIST, our algorithms perform better than SGD in
both testing and training lower bound. In particular, SGLD
with data corrupted with multiplicative noise N (1, 0.4

2
)

converges faster. This behavior may be counterintuitive to
the theoretical analysis in Theorem 1. However, as we dis-
cussed, one possible reason is data noise can be translated
to gradient noise by the Jacobian matrix, then the appropri-
ate amount of noise may lead to a larger parameter search-
ing space. Since MNIST has a relatively large size, we
see underfitting on all 1st order algorithms. It seems that

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Scalable Non-linear Beta Process Factor Analysis

Table 1. Lower Bound Report

Dataset SGD SGLD SGLD add.noise SGLD mul.noise HFSVI
train test train test train test train test train test

MNIST -101.5 -100.9 -100.6 -99.4 -100.1 -99.2 -99.9 -99.0 -109.0 -102.5
FreyFace 1406 1289 1411 1298 1419 1312 1367 1309 1437 1287

SGD suffers less from underfitting, however, its test lower
bound is smaller than the smallest training lower bound
of other algorithms. For Frey faces, SGLD with data cor-
rupted by either additive noise N (0, 0.1

2
) or multiplicative

noise N (1, 0.3

2
) achieves faster convergence, while vanilla

SGLD shows no significant improvement over traditional
SGD.

0 2000 4000 6000 8000 10000
Number of epoch

600

700

800

900

1000

1100

1200

1300

1400

V
a
ri
a
tio

n
a
l l

o
w

e
r

b
o
u
n
d

VAE
SGLD VAE
VAE (Input w/ add. noise)
VAE (Input w/ mul. noise)
VASE (Input w/ add. noise)
VASE (Input w/ mul. noise)

(a) Test LowerBound

0 2000 4000 6000 8000 10000
Number of epoch

-120

-100

-80

-60

-40

-20

0

20

40

T
e
st

 L
o
w

e
r

B
o
u
n
d
 -

 T
ra

in
 L

o
w

e
r

B
o
u
n
d

VAE
SGLD VAE
VAE (Input w/ add. noise)
VAE (Input w/ mul. noise)
VASE (Input w/ add. noise)
VASE (Input w/ mul. noise)

(b) Overfitting

Figure 3. Results on Frey faces dataset.

5.2. Preventing Overfitting

We train the model on a small dataset of approximately
2000 images, Frey faces, with real-valued inputs. Model
structure from bottom to top as described in Figure 1(a)
is 560-200-(200,200)-200-(560,560) where ⇢ = 0.1, is set
to be equivalent to standard VAE with 20 latent variables
(10% sparsity). For comparison, we also train a standard
VAE 560-200-(20,20)-200-(560,560). Results are shown
in Figure 3. Various training schemes are considered. Ba-

sically, adding noise to the input data while training im-
proves the performance on the final lower bound. Test-
ing performance with additive noise during training shows
higher lower bounds than with multiplicative noise, while
additive noise training results in larger gaps between test-
ing and training lower bounds, i.e., an even higher training
lower bound. However, this interesting phenomenon in-
dicates that better testing performances may be observed
even if the model is overfitting. Additionally, we see that
though the VSAE model has more parameters, results of
VSAE can yield higher test lower bounds with less overfit-
ting, since sparsity reduces model complexity but keeps the
flexibility.

We also train the simplified version VSAE (sVSAE) on
Frey faces without the two hidden layers, h

d

and h

e

, and
by setting K = 200 and ⇢ = 0.1. However, not surpris-
ingly, sVSAE (the lower bound is 1061) performs worse
than VSAE (1325), since the model only has three layers,
roughly equivalent to 560-(20,20)-560, approximately ⇢K

active units. We also find most of the active ⇡

i

are close
to 0, which we illustrate in Figure 5. The dictionary size
is 200, i.e., the number of latent Gaussian variables. How-
ever, because of the sparse prior, only 10 latent nodes have
significant weights (v

k

� 0.5, in our experiment). Thus,
the face can be represented as a weighted sum of the ten
activated dictionaries faces and the bias face, with a nonlin-
ear transformation (we used sigmoid). From the perspec-
tive of a generative model, each face can be encoded as a
linear combination of a few 1D Gaussian distributions. The
second row of Figure 5 shows some sampled faces. Each
image is generated by sampling p(x|v, z) after sampling
from p(v, z|x). This example highlights the flexibility of
VSAE, since different data points will activate different la-
tent variables.

5.3. Denoising

We demonstrate the ability of the noisy data model to im-
pute missing data or denoise images one mini-batch at a
time. The test images are first corrupted with different
scales of additive Gaussian noise. The VSAE model is
trained by SGLD with additive noise N (0, 0.1

2
); standard

VAE is also considered. The denoising process iterates by
using the output of the last iteration as input for the cur-
rent one. Figure 4(a) shows that standard VAE fails on
+N (0, 0.4

2
) noise after running 15 iterations. However,

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Scalable Non-linear Beta Process Factor Analysis

(a) +N (0, 0.42) noise fails traditional VAE (b) �2 = 0.42 (c) �2 = 0.62 (d) ⇤(1� Ber(0.8))

Figure 4. Denoise and Imputation: Images of (a-c) are corrupted by additive Gaussian noise, and denoised on SGLD trained VSAE, while
(d) is corrupted by Bernoulli noise. (a) VAE trained by standard SGLD; (b-d) VSAE trained by SGLD with additive noise N (0, 0.12).

Table 2. Perplexity on 20 News Test Data
Dim RepSoftmax SBN fDRAN DocNADE LDA sVSAE
50 953 909 917 896 1091 948

Dim DPFA-RBM DPFA-SBN DPFA-SBN LDA VSAE VSAE VSAE
BCDF SGNHT Gibbs Gibbs K = 256 K = 128 K = 64

128-64 893 896 851 893 875 877 885

the noisy trained VSAE can recover the images corrupted
by +N (0, 0.6

2
) within 10 iterations. In addition, even

with multiplicative Bernoulli noise (equivalent to set 80%
of the image pixels to missing), VSAE can successfully
impute the missing pixels. It has been demonstrated that
the standard VAE has the ability to impute Bernoulli noise
(Rezende et al., 2014). We show empirically that train-
ing with additive noise can be beneficial to both denois-
ing and imputation. To quantify denoising performance,
average pixel-to-pixel (rescaled to interval [0, 1]) sum of
squared errors (SSEs) between the recovered and original
faces are calculated. Standard VAE achieves 4.446, while
noisy trained VSAE yields 2.7216.

5.4. Topic Modeling

We present a simple application of VSAE to topic mod-
eling. The input x 2 ZV

+ , consists of count vector data,
that represents the frequency of each word in a vocabu-
lary of size V . The sparse binary latent variable v are the
stochastic latent topic distributions. The output layer y, is a
multinomial distributed layer, that can be seen as a directed
counterpart of the Replicated Softmax model (Hinton &
Salakhutdinov, 2009). The corresponding log-likelihood
log p�(x|z,v) =

P

V

i=1 xi

log y

i

+C, where C is a constant
independent of latent variables. Since y is simulated by a
softmax activation function, it is straightforward to derive
back-propagation algorithm.

In the variational inference framework, the per-
plexity is usually estimated by a lower bound on
exp

n⇣

� 1
N

P

N

i=1
1
L

i

p(x

i

)

⌘o

(Mnih & Gregor, 2014). We
first train sVSAE with a number of latent nodes equivalent
to 25 in VAE, i.e., K⇢ = 25. Perplexity results on 20
News are shown in Table 2. Result for sigmoid belief net

(SBN), DocNADE, and DPFA are from (Mnih & Gregor,
2014; ?; Gan et al., 2015). We can see that sVSAE has
less power to modeling topic data. However, the VSAE
(⇢ = 0.25 for all values of K) is trained as previously
described but for topic modeling can achieve competitive
results for two hidden layers models. Note that the results
reported by the Gibbs sampling algorithm are from the
predictive posterior, which are usually better than its upper
bound estimation.

Face Bias Activate dictionary elements, ⇡
e

samples:

Figure 5. Sparse Representation learned by sVSAE on Frey faces
data. Samples generated from one observation, top-left image.

6. Conclusion and Future Work
In this paper, we generalize standard BPFA to the non-
linear case, while allowing different input data types.
Meanwhile, a scalable inference framework based on vari-
ational sparse auto-encoders is developed, that achieves
competitive performance on benchmark datasets. Since the
VAE framework can be generalized and applied to a large
class of complex models (non-conjugate), one possible area
of future research can be to explore other non-parametric
Bayesian models that may fit our framework. Another pos-
sibility may be to establish theoretical guarantees for cor-
rupting hidden layers within the variational auto-encoder
framework.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Scalable Non-linear Beta Process Factor Analysis

References
Bengio, Yoshua, Yao, Li, Alain, Guillaume, and Vincent,

Pascal. Generalized denoising auto-encoders as gener-
ative models. In Advances in Neural Information Pro-
cessing Systems, pp. 899–907, 2013.

Blei, David M and Jordan, Michael I. Variational methods
for the dirichlet process. In Proceedings of the twenty-
first international conference on Machine learning, pp.
12. ACM, 2004.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray,
and Wierstra, Daan. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424, 2015.

Carin, Lawrence, Blei, David M, and Paisley, John W. Vari-
ational inference for stick-breaking beta process priors.
In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pp. 889–896, 2011.

Chen, Ning, Zhu, Jun, Chen, Jianfei, and Zhang, Bo.
Dropout training for support vector machines. In Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Re-
search, 12:2121–2159, 2011.

Fan, Kai, Wang, Ziteng, Beck, Jeff, Kwok, James, and
Heller, Katherine. Fast second-order stochastic back-
propagation for variational inference. In Advances in
Neural Information Processing Systems, 2015.

Gan, Zhe, Chen, Changyou, Henao, Ricardo, Carlson,
David, and Carin, Lawrence. Scalable deep poisson
factor analysis for topic modeling. In Proceedings of
the 32nd International Conference on Machine Learn-
ing (ICML-15), pp. 1823–1832, 2015.

Ghahramani, Zoubin and Griffiths, Thomas L. Infinite la-
tent feature models and the indian buffet process. In
Advances in neural information processing systems, pp.
475–482, 2005.

Hinton, Geoffrey E and Salakhutdinov, Ruslan R. Repli-
cated softmax: an undirected topic model. In Advances
in neural information processing systems, pp. 1607–
1614, 2009.

Hjort, Nils Lid. Nonparametric bayes estimators based on
beta processes in models for life history data. The Annals
of Statistics, pp. 1259–1294, 1990.

Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert.
Multilayer feedforward networks are universal approxi-
mators. Neural networks, 2(5):359–366, 1989.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kingma, Diederik P, Salimans, Tim, and Welling, Max.
Variational dropout and the local reparameterization
trick. arXiv preprint arXiv:1506.02557, 2015.

Larochelle, Hugo and Lauly, Stanislas. A neural autore-
gressive topic model. In Advances in Neural Information
Processing Systems, pp. 2708–2716, 2012.

Maaten, Laurens, Chen, Minmin, Tyree, Stephen, and
Weinberger, Kilian Q. Learning with marginalized cor-
rupted features. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pp. 410–
418, 2013.

Martens, James. Deep learning via hessian-free optimiza-
tion. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pp. 735–742,
2010.

Mnih, Andriy and Gregor, Karol. Neural variational infer-
ence and learning in belief networks. In Proceedings of
the 31st International Conference on Machine Learning,
pp. 1791–1799, 2014.

Neal, Radford M et al. Mcmc using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2:113–162,
2011.

Nesterov, Yurii. A method of solving a convex program-
ming problem with convergence rate o (1/k2). In Soviet
Mathematics Doklady, volume 27, pp. 372–376, 1983.

Ngiam, Jiquan, Coates, Adam, Lahiri, Ahbik, Prochnow,
Bobby, Le, Quoc V, and Ng, Andrew Y. On optimization
methods for deep learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-
11), pp. 265–272, 2011.

Paisley, John and Carin, Lawrence. Nonparametric fac-
tor analysis with beta process priors. In Proceedings of
the 26th Annual International Conference on Machine
Learning, pp. 777–784. ACM, 2009.

Paisley, John W, Zaas, Aimee K, Woods, Christopher W,
Ginsburg, Geoffrey S, and Carin, Lawrence. A stick-
breaking construction of the beta process. In Proceed-
ings of the 27th International Conference on Machine
Learning (ICML-10), pp. 847–854, 2010.

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Scalable Non-linear Beta Process Factor Analysis

Polyak, Boris Teodorovich. Some methods of speeding up
the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4(5):1–
17, 1964.

Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan.
Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning (ICML-
14), pp. 1278–1286, 2014.

Shah, Amar, Knowles, David, and Ghahramani, Zoubin.
An empirical study of stochastic variational inference al-
gorithms for the beta bernoulli process. In Proceedings
of the 32nd International Conference on Machine Learn-
ing (ICML-15), pp. 1594–1603, 2015.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Teh, Yee Whye, Thiéry, Alexandre, and Vollmer, Sebas-
tian. Consistency and fluctuations for stochastic gradi-
ent langevin dynamics. arXiv preprint arXiv:1409.0578,
2014.

Thibaux, Romain and Jordan, Michael I. Hierarchical beta
processes and the indian buffet process. In International
conference on artificial intelligence and statistics, pp.
564–571, 2007.

Van Der Vaart, Aad W and Wellner, Jon A. Weak Conver-
gence. Springer, 1996.

Wager, Stefan, Wang, Sida, and Liang, Percy S. Dropout
training as adaptive regularization. In Advances in Neu-
ral Information Processing Systems, pp. 351–359, 2013.

Welling, Max and Teh, Yee W. Bayesian learning via
stochastic gradient langevin dynamics. In Proceedings
of the 28th International Conference on Machine Learn-
ing (ICML-11), pp. 681–688, 2011.

Zhou, Mingyuan, Chen, Haojun, Ren, Lu, Sapiro,
Guillermo, Carin, Lawrence, and Paisley, John W. Non-
parametric bayesian dictionary learning for sparse image
representations. In Advances in neural information pro-
cessing systems, pp. 2295–2303, 2009.

