Scalable Variational Inference for Non-linear Beta Process Factor Analysis

Abstract

‘We propose a non-linear extension to factor anal-
ysis with beta process priors for improved data
representation ability. This non-linear Beta Pro-
cess Factor Analysis (nBPFA) allows data to be
represented as a non-linear transformation of a
standard sparse factor decomposition. We de-
velop a scalable variational inference framework,
which builds upon the ideas of the variational
auto-encoder, by allowing latent variables of the
model to be sparse. Our framework can be
readily used for real-valued, binary and count
data. We show theoretically and with experi-
ments that our training scheme, with additive or
multiplicative noise on observations, improves
performance and prevents overfitting. We bench-
mark our algorithms on image and text datasets.
We demonstrate faster convergence rates and
competitive performance compared to standard
gradient-based approaches.

1. Introduction

Sparse factor analysis is a well-known statistical method
used to describe the correlation structure multivariate data,
in terms of a potentially small set of K latent factors, such
that each observation is allowed to explained by a combina-
tion of up to K of these factors. Beta Process Factor Analy-
sis (BPFA) is a Bayesian nonparametric approach to sparse
factor analysis, where factor memberships are modeled via
a beta process prior (Paisley & Carin, 2009). The Beta pro-
cesses (Hjort, 1990), and related priors for mixed mem-
bership, such as the Indian Buffet Process (IBP) (Ghahra-
mani & Griffiths, 2005), are appealing because they pro-
vide a principled way of estimating K, which is usually
unknown. The Beta process is also a fully-Bayesian conju-
gate prior, which in the case of BPFA, allows for analytic
posterior calculation and fast variational inference (Paisley
etal., 2010; Carin et al., 2011).

Though BPFA avoids the need to set K a priori and allows
for efficient inference, it is limited to second-oder statistics,

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

i.e., linear combinations of Gaussian distributions (factors).
We aim to improve the representation power of BPFA by
allowing non-linear combinations of Gaussian factors. In
principle, non-linear BPFA will be more flexible in its abil-
ity to explain the data because unlike traditional BPFA, is
not restricted to only capture linear correlations.

A key problem of non-linear factor analysis models in gen-
eral is that they are usually non-conjugate, which makes
inference difficult and computationally expensive, if not
prohibitive. Consequently, fast inference approaches for
BPFA such as variational EM (Paisley & Carin, 2009), vari-
ational Bayes (Carin et al., 2011) and stochastic variational
inference (Shah et al., 2015), can no longer be applied.
The Variational Auto-Encoder (VAE) is a scalable stochas-
tic variational inference and learning framework that effi-
ciently approximates the posterior of the latent variables
of a model using a recognition model (Kingma & Welling,
2013). In this framework, a Stochastic Gradient Variational
Bayes (SGVB) estimator is used to optimize the recogni-
tion model, by minimizing the KL divergence between the
prior imposed on the latent variables and the recognition
model. Here, we extend VAE to allow latent variables to
have a spike and slab prior, represented as an element-wise
product of a continuous variable (Gaussian) and a binary
vector drawn from a beta process prior. The new frame-
work, termed Variational Sparse Auto-Encoder (VSAE),
allows us to specify a non-linear version of BPFA in which
both, the generative and the recognition models are built
via multi-layer perceptrons (MLPs) (Hornik et al., 1989).

We also propose a more robust SGVB estimator, specifi-
cally designed for denoising and imputation, two tasks tra-
ditionally addressed by factor analysis models. It is un-
derstood that the VAE framework is advantageous for im-
putation purposes (Rezende et al., 2014). Here we go one
step further by adding stochasticity to the gradient estima-
tion in SGVB, via Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Teh, 2011), in order to improve denois-
ing ability (Bengio et al., 2013). In particular, we leverage
the data corruption technique of Maaten et al. (2013); Wa-
ger et al. (2013); Chen et al. (2014), which we demonstrate
is equivalent to impose noise on the gradients in the SGVB
formulation. Further, we justify the asymptotic properties
of the robust SGVB for noise corrupted inputs.

The contributions of our work are: (i) We propose a non-

Scalable Non-linear Beta Process Factor Analysis

linear version of BPFA; (i7) We introduce a variational
sparse auto-encoder framework for sparse latent variables;
(ii7) We propose a robust SGVB estimator based on data
corruption techniques, with theoretical justification; (iv)
Experiments on real image and text data demonstrate fast
convergence rates and competitive performance w.r.¢ stan-
dard gradient-based approaches.

2. Background

Sparse factor analysis explains a data vector, x; € R,
in terms of Gaussian latent variable, z;, v; € R¥, binary
factor indicators, v; € {0, 1}K , and weight matrix (factor
loadings), W € RP*K with K factors as

X; :W(ZiQVi)+€ia €; NN(O7’7_1ID)7 (1)
where © is represents the element-wise product, z; follows
a zero-mean Gaussian distribution with isotropic covari-
ance matrix, denoted 03 Ix. Elements of the weight matrix,
‘W, are Gaussian with zero-mean. Observation noise, €;, is
zero-mean Gaussian with covariance v~ I . The prior dis-
tribution for each element of v is v;; ~ Ber(&y), Bernoulli
distributed, with &, ~ Beta(a/K,b(K —1)/K). This spec-
ification for sparse factor analysis has the advantage of be-
ing fully local-conjugate, thus conditional posteriors can be
evaluated analytically (Paisley & Carin, 2009).

In the limit, when K — o0, the number of non-zero
elements of v; is a random variable with distribution
Poisson(a/b), and v; follows a beta process. Under these
conditions, the model in (1) is called Beta Process Factor
Analysis (BPFA) (Paisley & Carin, 2009).

Denote the two-parameter beta process as BP(a, b, Ho),
where a, b > 0 and H, is the base measure. The BP can be
represented as follows (Zhou et al., 2009),

K
H(U) = & 5vk (U)7
; ’ (2

& =Beta(a/K,b(K —1)/K), vk~ Ho,
where H(v) is a well-defined probability measure for the
vector v, of length K, as K — oo (Hjort, 1990). The
generative process in (2) can be extended to binary matrices
using a two-step process akin to the Indian buffet process
(Thibaux & Jordan, 2007).

Performing inference directly from the infinite beta process
is difficult and computationally expensive. In practice, a fi-
nite approximation is used instead, where K is set to a large
but finite number, similar to truncated approximations for
Dirichlet processes (Blei & Jordan, 2004). In such case, the
local conjugacy of the specification in (1) can be still lever-
aged, and efficient inference can be carried out via varia-
tional methods (Paisley et al., 2010; Carin et al., 2011).

3. Non-linear BPFA

In this section, we propose a non-linear version of BPFA
by imposing a non-linear transformation f(-), on the linear
decomposition in (1) as

x ~ N (pg,diag(o;)) , 3)

where p, = f(W(z ®v)) and f(-) is an invertible map-
ping, e.g., sigmoid, hyperbolic tangent or their composi-
tion. The invertibility assumption can be relaxed in prac-
tice. Multi-layer perceptrons (MLPs) are commonly used
non-linear mappings, however, they may not be invertible
for some activations such as the rectified-linear function
max{0,u}. An invertible alternative to the rectified-linear
used in MLPs is log(1 4 e*). Note that we have marginal-
ized out €; from (1) and we have replaced the isotropic
covariance, v~ 'Ip from traditional BPFA, by a diagonal
with elements specified in o,. Details of u, and o, are
provided in the next section.

The efficient variational EM algorithm of Paisley & Carin
(2009) cannot be used for (3) because the conditional pos-
terior of W and z are no longer conjugate; at least for most
choices of the function f(-). However, we can still leverage
the finite approximation of the beta process to introduce a
recognition model. In the following, we develop a stochas-
tic variational inference framework to jointly learn the pa-
rameters of the generative model in (3) and a recognition
network for latent variables z and v, provided that v has a
beta prior.

3.1. Scalable Variational Inference

We construct our stochastic variational inference frame-
work based upon ideas from the variational auto-encoder
(VAE). We start by considering the generative model with
joint distribution written concisely as pg(x, z, v, £), where
& = (&,%,...,€k) is the truncated beta process in (2).
The generative model is parameterized then by 0 (includ-
ing W) from (3). Using Bayes’ rule, we can factorize the
joint of the generative model as p(&|v)p(x|z, v)p(z)p(Vv).
We also propose a recognition model in the form of a varia-
tional distribution for the posterior of the latent variables as
¢y (2, v, €|x) = q(z]x)q(&|v)q(v|x), parameterized by).
If we further assume that ¢(&|v) takes the form of the (un-
known) true posterior p(€|v), the lower bound, £(8, ; x),
can be simplified as follows

log pg(x,2,v, §)
log gy (2, v, €|x)
> Eqy,, [log p(x|z, v)]

— Dir(q(z[x)[|p(2)) — Drr(q(v|x)[lp(v)),

logp(x) > By, [} 2 £(0,9:%)

where p(vy) ~ Ber (m), after marginalizing out
&, with p(vg|€) ~ Ber(&x) and & as in (2). We can further

Scalable Non-linear Beta Process Factor Analysis

Generative Model
| Gaussian

—p=0.1, D(x||p)

3.5¢f p=0.1, D(p||7)
—p=0.3, D(7|[p)

3 p=0.3, D(pl|7)
p=0.5, D(7|[p)

25+ p=0.5, D(p|Im)

KL Divergence
o om

o
o =

o

(b)

Figure 1. (a) VSAE network for continuous input: ~ means
sampling, where v ~ Ber(w), z ~ N(u.,diag(o?)) and
x ~ N(pz,diag(a2)); each — means an element-wise map-
ping g(W;s + b;), where g can be either nonlinear or linear and
s is the source. h. and h, are the shared hidden layers in gener-
ative mode and recognition model respectively. (b) Comparison
between different sparse penalties.

denote p = . The sparse prior imposed on v, via

a+b(l;(—1)
vg, ~ Ber(p), is controlled by tuning parameters a and b.

For the recognition model, the proposed variational distri-
bution is restricted to be in a family of distributions of sim-
pler form than true posterior, but preferably flexible enough
to contain the true posterior as an instance. In particular, we
let ¢(z|x) follow a N (p, diag(o,)), rather than the zero-
mean isotropic Gaussian distribution as in standard BPFA.
Further, ¢(v|x) follows Ber(m.), in a slight abuse of nota-
tion, meaning a product of K independent Bernoulli distri-
butions with parameters in 7r.. These specifications guar-
antee that that the true posterior belongs to the same fam-
ily as the variational distribution. To allow for flexibility,
we use the trick of embedding parameters via multi-layer
perceptrons, i.e., g, = MLP;(x), 0, = MLPy(x) and
7 = MLP3(x), where

MLP]'(X) = Q(the + bj), h, = tanh(Wox + bo), 4)

where h, is a shared hidden layer for MLPy; 5 3. Note that
the map x — (v, z) as specified above defines an encoding
process, whereas (3) defines a decoding process. In fact,
we can use a MLP formulation for (3), particularly, we let

e = MLP,(z ® v) and o, = MLP5(z ® v), both with a
shared hidden decoding layer, h; = tanh(W(z ® v) + b).
As a result, parameters 1 and 6 are weights and biases
of all MLPs, {1,2,3} for the encoder and {4,5} for the
decoder. We call this framework variational sparse auto-
encoder (VSAE).

Compared to standard VAE (Kingma & Welling, 2013), our
recognition model has two additional components

7. = sigmoid(W3h,. + bs), v ~ Ber(m,.),

where h, is shared and defined in (4) and recall that z <
z ® v. The compete model, which can be seen as a deep
neural network, is illustrated in Figure 1. The input and
the output layers have D nodes since x; € RP, and the
middle layer latent layer has two variables v and z, with
K nodes each. For real-valued inputs, we have two out-
put layers as p, and o, respectively. The number of
nodes on hidden encoder and decoder layers is set empir-
ically. For backpropagation purposes, the difference be-
tween VAE and VSAE lower bounds, using a factorized
variational distribution for v and z is

Dicr(q(zx)|p(2)) + Dicr (a(v]x)[|p(v))
=I5 (4} + 0} — 1 - 2logoy,)
+ 25:1 (Wk log 7% 4 (1 —) log 11—%;) 7

where pij, o and 7 are elements of u,, o, and ., re-
spectively. The second KL divergence term is imposed to
control the sparsity of latent variable v. Note that the KL
divergence of a Bernoulli distribution reaches its minimum
of 0if m; = p. As aresult, when the parameter of the sparse
prior, p, becomes smaller, the model will become sparser.
In fact, the sparsity constraint in standard auto-encoders
can be formulated as D1 (p(v)||gy (v]x)) (Ngiam et al.,
2011). However, when 7 approaches O or 1, this regular-
ization term may diverge to infinity (see Figure 1(b)), thus
requiring an additional tuning weight, A, to act as a trade-
off between the magnitude of the KL divergence and the
log-likelihood expectation, E,,, [log p(x|z, v)]. Instead, the
KL divergence term in our lower bound can reach its max-
imum either at log(1/p) or log(1/(1 — p)). As aresult, the
additional tuning parameter is not necessary.

3.2. Continuous Approximation

In back-propagation inference, Monte Carlo integration is
required to calculate the expectation E, [log p(x|z, v)].
Due to the nice property of location scale-families, the
variance of integration with respect to a latent Gaussian
variable, z, can be reduced by the reparameterization trick
(Kingma & Welling, 2013). In fact, even one draw from
the standard Gaussian distribution is sufficient to approx-
imate the expectation with an exponential decay error,

Scalable Non-linear Beta Process Factor Analysis

under some mild conditions (Fan et al., 2015). How-
ever, as to the latent Bernoulli variable, v, one draw from
the Bernoulli distribution using Monte Carlo integration
may result in a very large bias, which in turn, will de-
crease the convergence rate. The reason is, E[f(v)] =

2 ve{0,1}K [T, pi* (1 — pi)'=¥* f(v) includes the sum-
mation of 2% terms, and one draw is only one of them.
Mnih & Gregor (2014) applied the control variate trick of
reinforcement learning to reduce the variance. In this pa-
per, we can circumvent this variance reduction need, by
directly setting 7. € [0, 1]%, as the latent variable during
stochastic back-propagation, in order to avoid drawing too
many samples to achieve the intended accuracy. This con-
tinuous approximation for binary variables does not harm
the regularization term or the KL divergence in the objec-
tive lower bound. Meanwhile, it reduces v to determin-
istic back-propagation while other latent variables remain
the same. Consequently, significant less computation is
required compared with the control variate trick or multi-
sample Monte Carlo integration.

Any stochastic optimization for variational inference is al-
lowed in our framework, so the algorithm is scalable for
large datasets. Uncertainty of W in (3) accounted for in
BPFA is omitted here for simplicity. Correspondingly, only
the weight matrix associated with z ® v in our model needs
uncertainty, e.g., Wy in Figure 1(a). However, the tech-
nique in (Blundell et al., 2015; Kingma et al., 2015) of in-
ferring weight uncertainty in neural networks can straight-
forwardly applied to all weight matrices, which is not the
specific topic of our paper. In addition, we can simplify
VSAE by removing the hidden encoder and decoder lay-
ers of VSAE, h. and hg, thus yielding a simpler version
of non-linear BPFA. Further, in the next section, we will
discuss how we implement VSAE with a noisy training
method to make the factor analysis model faster and more
robust for denoising and imputation tasks.

4. Noisy VSAE
4.1. Data Corruption

Unlike traditional VAE, one of the advantages of VSAE is
that it controls the activation of latent variables for different
inputs. In principle, this setting will make the model more
flexible to represent more data. In this section, we design a
noisy training scheme to further strengthen this ability. In
a nutshell, our stochastic optimization algorithm resembles
stochastic gradient Langevin dynamics (SGLD).

4.1.1. STOCHASTICITY FROM DATA NOISE

Maximizing the the lower bound of an auto-encoder is
equivalent to optimize a function £(0, ; x, t), where the
target t equals input x. If we consider £(6, ¥; X, x), where

the input is noised but the target remains unchanged, we
can analyze how to impose stochasticity to the estimated
gradient from corrupted input. Particularly, we consider
two simple corruption settings: additive and multiplicative
Gaussian noise, which is a fairly common practice in recent
machine learning literature (Srivastava et al., 2014; Kingma
et al., 2015). We will show that data noise is equivalent to
adding a preconditioned adjustment to the gradient of the
parameters.

Denote ¢ = {0,1} and g(¢,x,t), as the first order
derivative of the lower bound w.r.t. ¢. For additive noise,
we assume Ax ~ N(0,alp). For multiplicative noise,
the corrupted input x = x ® o, where @ ~ N (1,alp).
Thus, Ax = x ® (o — 1), and Ax ~ N(0, aX), where
3 = diag(x ®x). In the dropout setting (Srivastava et al.,
2014) with drop rate 3, « can be set to 5/(1 — j3).

Consider the Taylor expansion of vector-valued the func-
tion g : RP — RP, w.rt. input variable x,

g(¢, x + Ax, t) = g(,x, t) + J(x) Ax + o([| Ax]]), (5)

where J(x) is Fréchet derivative or Jacobian matrix with
dimension P x D, || - || represents the Euclidean norm and
o(+) is an infinitesimal. In fact, the linear map described
by J is the best linear approximation of g near the point
x. For both additive and multiplicative noise, the resulting
noise imposed on the gradient by a linear transformation
is also Gaussian noise, but with a new covariance matrix
3 =aJJ7 or aJX,J 7. However, like back-propagation
for deep neural networks, the error between the output and
the target has a less significant influence on the parame-
ter gradient of lower layers; similarly, the corruption intro-
duced here will decrease and have less impact on the top
layers. Thus, dropout is usually applied to each layer sepa-
rately.

4.1.2. CONNECTION TO SGLD

Equation (5) indicates data noise can be transferred to gra-
dient noise. However, the purpose of SGLD is to follow
the Markov chain Monte Carlo (MCMC) approach to cap-
ture uncertainty, by directly adding a zero-mean Gaussian
noise with decreasing variance, to a standard SGD update:

A¢y = F (V logp(#) + % 212y Vlog p(x, ¢)> + M
where 1; ~ N (0, ¢;1p) and B is the mini-batch size. Note
that another two sources of stochasticity exist: one is the
rescaled gradient estimated from the mini-batch data; the
other one is the Langevin dynamics from injected Gaussian
noise. In practice, a variety of adaptive learning rate opti-
mization methods have been proposed, especially in the op-
timization community (Duchi et al., 2011; Kingma & Ba,
2014). For the rationale of the magnitude of additive Gaus-
sian noise, an intensive analysis of the consistency and fluc-
tuations of SGLD under verifiable assumptions implies that

Scalable Non-linear Beta Process Factor Analysis

its asymptotic bias and variance can be rigorously charac-
terized by an explicit function of the learning rate sequence
(Teh et al., 2014). The lower bound £(¢;x,t) of VSAE
can also be decomposed to two parts. The first term is the
expectation of log p(t|z, v, ¢) dependent on the target. The
second one is the KL divergence term between the posterior
and prior of latent variables. Like in SLGD, we can also
add the parameter prior p(¢). Therefore, we will provide a
unifying framework to demonstrate how the three sources
of stochasticity can affect the gradient based algorithm.

4.1.3. CONSISTENCY AND LOCAL-OPTIMALITY

As previously discussed, multiplicative noise can be es-
sentially considered as additive noise with adaptive vari-
ance, dependent on each evaluated data point. Thus, we
only explore the convergence properties in the case of ad-
ditive noise. In principle, each element function of g is
required to belong to a 2nd order smoothness function C'2
(Van Der Vaart & Wellner, 1996) w.r.t. X, where the class of
C? has uniformly L-bounded partial derivatives up to order
2, namely, the 2nd order Holder continuous partial deriva-
tives. For clarity, denote the average negative lower bound

as Lan(9) = =3 (logp(¢) + X1V, L(¢5xi.t:)). One
can minimize this objective function to obtain an estimate
of ¢. For L,,,, we only need to assume it is locally convex
(i.e., convex in a bounded region, {¢ : ||¢p — ¢1||* < 2R})
to guarantee the exist of local optima. In fact, for Ist or-
der gradient based algorithms, it is not necessary to assume
that £, is twice differentiable; instead we merely consider
a weaker condition: VL, is y-Lipschitz, i.e., L), is y-
smoothness.

Theorem 1 (Local Convergence Rate). Assume L., (¢p) is
~-smoothness local convex function w.r.t ¢; g(¢,x,t) €
C% w.rt X; stochastic gradient oracle on each data
point variance is bounded by C. Then, by set-
ting input x corrupted with additive Gaussian noise
N(0,0Ip), mini-batch size B and step-size € =

4 1 .
N \/t(C+L2D+o(Da)+2B/N) , SGLD update satisfies
v+ 2RB

E

1 T
< T Z E [‘CCL'IL (¢t+1)}
t=1

1 T
['an <T Z ¢t+1>
t=1
T

< Lon(®") +0 (VDa) |} > Elgi—¢7]| ©
t=1

Ry \/QR(O + L2D + o(Da) + 2B/N)
T TB

where @™ is the local optimum.

Intuitively, Theorem 1 (proof and relevant definitions pro-
vided in the supplements) characterizes the behavior when
the algorithm has already moved into a local mode, and in-

dicates that the model bias induced by averaging the sam-
pled parameter can be bounded by averaging models, and
further bounded by three monotonically decreasing terms
w.r.t sample size. The first term is associated with the
bias of parameter posterior mean scaled by an infinitesimal

0 <@>, which is controlled by the standard deviation

of data corruption noise. Note that if no data corruption
is introduced in the algorithm, this term will vanish com-
pletely, thus degenerating to the convergence rate of stan-
dard SGLD. In addition, the second and third terms dimin-

ish with order O (%) and O (ﬁ), respectively.

In the case of multiplicative noise, we can obtain a simi-
lar convergence bound, by defining an additive noise with
bounded variance, v/2Ra, and substituting for the o within
inequality (6). If we reformulate to the gradient update in

SGLD, it can be viewed as adding a zero-mean Gaussian

noise, A’ (0, el + N8 J(xti)Eme(xti)T) How-

ever, it is unnecessary to add this noise in the gradient up-
date, since the covariance matrix is not diagonal. Sampling
from such a distribution with less numerical error usually
requires Cholesky decomposition, while directly adding
noise to input data takes much less computation.

4.1.4. CONSISTENCY WITH MOVING AVERAGE

In addition to modifying the standard SGLD, in this section
we further discuss how the momentum method (Polyak,
1964; Nesterov, 1983) is influenced with noisy training by
exploring its theoretical properties, which is scarcely dis-
cussed in previous literature, to the best of our knowledge.
We can readily formulate a standard momentum (SM) or
Nesterov’s Acceleration (NA) update for SGLD as follows,

SM : pry1 = bt — €,V_Lan (1) +me @)
NA :pip1 = bt — €, V-Lan (Pt + pupe) + e, (8)
G141 = Py +Pig1, &)

where €, = Ne¢;/2. From the perspective of implementa-
tion, the two-step update is convenient. However, we can
rewrite as a one-step second order moving average. Note
that the second order here refers to the parlance in autore-
gressive (AR) models literature. The motivation for intro-
ducing momentum is to average previous samples with mi-
nor weights. More concretely, we have

Dir1 = P+ pe(pr — dr—1) — €,V Lan(dr) + e, (10)

For NA, we only need to change VL, (¢;) to VL, (¢ +
1pt). Intuitively, the momentum method plays the role
of the inertia in the Newton’s laws of motion. The next
direction for gradient descent takes the acceleration veloc-
ity between previous two steps into account, i.e., W
where the time interval 6¢ = 1 in our case. This means the

b}

Scalable Non-linear Beta Process Factor Analysis

Algorithm 1 Training with raw and noisy data.

1: fort=1,2,... do
2: xf/ 1 < Randomly draw B/2 data points.
5(23/ 12 — xf/ 12 with injected noise.
B2 Xy /1 and target x; /l,xf/lz

Optimize the lower bound of the VSAE.

3
4: Setinputx,’]
5:
6: end for

newly sampled parameters depend on three key factors: the
original direction computed from negative gradient, the in-
ertia direction from previous history, and the random direc-
tion from injected Gaussian noise. Geometrically, from the
vertex ¢, we can follow a parallelogram law with the first
two directions of the length €, and y, respectively; subse-
quently, a small perturbation is added. We show a figure in
the supplements that intuitively illustrates that the Langevin
dynamics can explore larger parameter space, thus poten-
tially mitigating the overfitting problem, which is one of
most appealing advantages of noisy training. Under minor
modification of the assumptions in Theorem 1, we obtain a
similar result.

Theorem 2. Under the same assumptions of Theorem I,
except for relaxing the smoothness condition to adaptive
smoothness, i.e., for the current ¢, the function satisfies
i-smoothness in the region {¢ : || — ¢¢|| < €;}, SGLD
Wlth update (8) and (9) satisfies

AR sup;, .7 V¢

[‘Can (QST)} < ‘Can(T2
8R(C' +2B/N)sup,.r Vi 1 1
* \/ 3 5 3T 612

TB

o)+

2_ 1
N [8(ct2B/N)
Yt/ 2rE Sub;<¢ 7Vt

Note that R can be replaced by ||¢1 — ¢*||?/2. Due to the
stochasticity from the mini-batch and Langevin dynamics,

where €; =

the convergence rate is deteriorated by a term O (\/ﬁ)

however, this result is comparable with the optimization
algorithm, ADAM (Kingma & Ba, 2014), whose conver-

gence rate is proved to be O (within the online learn-

\/7 9
ing framework and thus equivalent to our result without
mini-batch size in the denominator. Further, we include
the analysis connecting to HMC (Neal et al., 2011) in sup-

plementary materials.

S. Experiments

We explore how different training approaches can affect the
performance of convergence rates, overfitting and denois-
ing. In addition, we apply the VSAE framework to topic
modeling.

Variational lower bound

2.0

-98
—SGD
100 = —SGLD
3 5 SGLD w/ add. noise
102 @ —SGLD w/ mul. noise
°
104 /; T8
/ ~" [—SGD :
106 { SGLD 3 \ et o
[——SGLD w/ add. noise e %, g
108 i/ ——SGLD w/ mul. noise [
SGD (train) 2 1 "
110 K SGLD (train) 3 WMM AM
- SGLD w/ add. noise (train) g
112 SGLD w/ mul. noise (train) il MVWW
0.5
200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

(a) Lower Bound (b) Underfitting

Figure 2. Performance comparison on MNIST data. In (a), solid
and dashed lines are test and train lower bounds, respectively. (b)
illustrates testing and training lower bound differences.

5.1. Practical Algorithm

We first specify a training algorithm for noisy data. The
idea is to double the training set size using raw and noise
corrupted data. In each iteration, we sample a mini-batch
of data points X with size B/2, and inject some appropri-
ate noise to obtain X. Then, we feed the input {X, X} to
the auto-encoder using {X, X} as target. This is similar
to the approach discussed in the previous section, except
that input data points are not all corrupted. This training
framework is illustrated in Algorithm 1.

Different SGLD algorithms are considered. For compar-
ison, we implemented algorithms in (Kingma & Welling,
2013; Fan et al., 2015), referred here as SGD and Hessian-
free SVI (HFSVI). Results on two well-known image
datasets, MNIST and Frey faces, are shown in Table 1 and
Figure 2 (all algorithms are tuned for performance with
and without momentum update). Since HFSVI converges
quickly (within 50 epochs), we do not include it in the con-
vergence rate comparison of 1st order algorithms. How-
ever, is clear that HFSVI suffers from severe overfitting,
even when we use a mini-batch of size 1000 (a mini-batch
of size 100 performs worse). Note that 2nd order algo-
rithms often require large batch size (Martens, 2010). For
all 1st order algorithms, we use a mini-batch size of 100.
The settings for MNIST and Frey faces data are dj, = 400
and dj, = 200, respectively, while d, = 200 and p = 0.1
in both cases.

For MNIST, our algorithms perform better than SGD in
both testing and training lower bound. In particular, SGLD
with data corrupted with multiplicative noise N'(1,0.4%)
converges faster. This behavior may be counterintuitive to
the theoretical analysis in Theorem 1. However, as we dis-
cussed, one possible reason is data noise can be translated
to gradient noise by the Jacobian matrix, then the appropri-
ate amount of noise may lead to a larger parameter search-
ing space. Since MNIST has a relatively large size, we
see underfitting on all Ist order algorithms. It seems that

Scalable Non-linear Beta Process Factor Analysis

Table 1. Lower Bound Report

Dataset . SGD .SGLD SGI?D add.noise SGFD mul.noise .HFSVI
train test train test train test train test train test
MNIST -101.5 | -100.9 | -100.6 | -99.4 | -100.1 -99.2 -99.9 -99.0 -109.0 | -102.5
FreyFace 1406 1289 1411 1298 1419 1312 1367 1309 1437 1287

SGD suffers less from underfitting, however, its test lower
bound is smaller than the smallest training lower bound
of other algorithms. For Frey faces, SGLD with data cor-
rupted by either additive noise A/(0, 0.12) or multiplicative
noise \/(1, 0.3?) achieves faster convergence, while vanilla
SGLD shows no significant improvement over traditional
SGD.

1400
1300 -
'8
> 1200 ¢
]
o)
5 1100+
2
21000 -
E
900
2 —VAE
2 goolfl |——SGLD vAE
© | VAE (Input w/ add. noise)
= 700 —— VAE (Input w/ mul. noise)
—— VASE (Input w/ add. noise)
600 VASE (Input w/ mul. noise) ‘
0 2000 4000 6000 8000 10000

Number of epoch

(a) Test LowerBound

NN T T W
Wi,

_ L A AN
100 VWW

-120
0

S 40 i i

o —VAE

D 20 ——SGLD VAE]
[0} N VAE (Input w/ add. noise)

g ol —— VAE (Input w/ mul. noise) |]
| A —— VASE (Input w/ add. noise)
£ ool N VASE (Input w/ mul. noise) | |
©

F a0}

2

3 -60 +

m A A

5 -80 f AN g

]

o

3

17

)

'_

2000 4000 6000 8000
Number of epoch

(b) Overfitting

10000

Figure 3. Results on Frey faces dataset.

5.2. Preventing Overfitting

We train the model on a small dataset of approximately
2000 images, Frey faces, with real-valued inputs. Model
structure from bottom to top as described in Figure 1(a)
is 560-200-(200,200)-200-(560,560) where p = 0.1, is set
to be equivalent to standard VAE with 20 latent variables
(10% sparsity). For comparison, we also train a standard
VAE 560-200-(20,20)-200-(560,560). Results are shown
in Figure 3. Various training schemes are considered. Ba-

sically, adding noise to the input data while training im-
proves the performance on the final lower bound. Test-
ing performance with additive noise during training shows
higher lower bounds than with multiplicative noise, while
additive noise training results in larger gaps between test-
ing and training lower bounds, i.e., an even higher training
lower bound. However, this interesting phenomenon in-
dicates that better testing performances may be observed
even if the model is overfitting. Additionally, we see that
though the VSAE model has more parameters, results of
VSAE can yield higher test lower bounds with less overfit-
ting, since sparsity reduces model complexity but keeps the
flexibility.

We also train the simplified version VSAE (sVSAE) on
Frey faces without the two hidden layers, hy and h., and
by setting K = 200 and p = 0.1. However, not surpris-
ingly, sVSAE (the lower bound is 1061) performs worse
than VSAE (1325), since the model only has three layers,
roughly equivalent to 560-(20,20)-560, approximately p/
active units. We also find most of the active 7; are close
to 0, which we illustrate in Figure 5. The dictionary size
is 200, i.e., the number of latent Gaussian variables. How-
ever, because of the sparse prior, only 10 latent nodes have
significant weights (v, > 0.5, in our experiment). Thus,
the face can be represented as a weighted sum of the ten
activated dictionaries faces and the bias face, with a nonlin-
ear transformation (we used sigmoid). From the perspec-
tive of a generative model, each face can be encoded as a
linear combination of a few 1D Gaussian distributions. The
second row of Figure 5 shows some sampled faces. Each
image is generated by sampling p(x|v,z) after sampling
from p(v,z|x). This example highlights the flexibility of
VSAE, since different data points will activate different la-
tent variables.

5.3. Denoising

We demonstrate the ability of the noisy data model to im-
pute missing data or denoise images one mini-batch at a
time. The test images are first corrupted with different
scales of additive Gaussian noise. The VSAE model is
trained by SGLD with additive noise N(0,0.12); standard
VAE is also considered. The denoising process iterates by
using the output of the last iteration as input for the cur-
rent one. Figure 4(a) shows that standard VAE fails on
+N(0,0.42%) noise after running 15 iterations. However,

Scalable Non-linear Beta Process Factor Analysis

(@ +

»! bt ot | b b b b »!

-

0
b
e
e
e

o e e
4 T

#3] -
> "

- [- wfrefesfaclaclrcloclrcfoclocfocfoclas

el
(d) (1 — Ber(0.8))

Figure 4. Denoise and Imputation: Images of (a-c) are corrupted by additive Gaussian noise, and denoised on SGLD trained VSAE, while
(d) is corrupted by Bernoulli noise. (a) VAE trained by standard SGLD; (b-d) VSAE trained by SGLD with additive noise N/ (0, 0.12).

Table 2. Perplexity on 20 News Test Data

Dim | RepSoftmax | SBN | fDRAN | DocNADE | LDA | sVSAE
50 953 909 917 896 1091 948
Dim | DPFA-RBM DPFA-SBN DPFA-SBN | LDA VSAE VSAE VSAE
BCDF SGNHT Gibbs Gibbs | K =256 | K =128 | K =64
128-64 893 896 851 893 875 877 885

the noisy trained VSAE can recover the images corrupted
by +A(0,0.6%) within 10 iterations. In addition, even
with multiplicative Bernoulli noise (equivalent to set 80%
of the image pixels to missing), VSAE can successfully
impute the missing pixels. It has been demonstrated that
the standard VAE has the ability to impute Bernoulli noise
(Rezende et al., 2014). We show empirically that train-
ing with additive noise can be beneficial to both denois-
ing and imputation. To quantify denoising performance,
average pixel-to-pixel (rescaled to interval [0,1]) sum of
squared errors (SSEs) between the recovered and original
faces are calculated. Standard VAE achieves 4.446, while
noisy trained VSAE yields 2.7216.

5.4. Topic Modeling

We present a simple application of VSAE to topic mod-
eling. The input x € ZY, consists of count vector data,
that represents the frequency of each word in a vocabu-
lary of size V. The sparse binary latent variable v are the
stochastic latent topic distributions. The output layer y, is a
multinomial distributed layer, that can be seen as a directed
counterpart of the Replicated Softmax model (Hinton &
Salakhutdinov, 2009). The corresponding log-likelihood
log pe(x|z,v) = Zyzl z; logy; +C, where C is a constant
independent of latent variables. Since y is simulated by a
softmax activation function, it is straightforward to derive
back-propagation algorithm.

In the variational inference framework, the per-
plexity is usually estimated by a lower bound on

exp { (f% N %p(xﬁ) } (Mnih & Gregor, 2014). We
first train sVSAE with a number of latent nodes equivalent
to 25 in VAE, ie., Kp = 25. Perplexity results on 20

News are shown in Table 2. Result for sigmoid belief net

(SBN), DocNADE, and DPFA are from (Mnih & Gregor,
2014; ?; Gan et al., 2015). We can see that SVSAE has
less power to modeling topic data. However, the VSAE
(p = 0.25 for all values of K) is trained as previously
described but for topic modeling can achieve competitive
results for two hidden layers models. Note that the results
reported by the Gibbs sampling algorithm are from the
predictive posterior, which are usually better than its upper
bound estimation.

Face Bias Activate dictionary elements, 7,
&

I
samples:

Figure 5. Sparse Representation learned by sVSAE on Frey faces
data. Samples generated from one observation, top-left image.

6. Conclusion and Future Work

In this paper, we generalize standard BPFA to the non-
linear case, while allowing different input data types.
Meanwhile, a scalable inference framework based on vari-
ational sparse auto-encoders is developed, that achieves
competitive performance on benchmark datasets. Since the
VAE framework can be generalized and applied to a large
class of complex models (non-conjugate), one possible area
of future research can be to explore other non-parametric
Bayesian models that may fit our framework. Another pos-
sibility may be to establish theoretical guarantees for cor-
rupting hidden layers within the variational auto-encoder
framework.

Scalable Non-linear Beta Process Factor Analysis

References

Bengio, Yoshua, Yao, Li, Alain, Guillaume, and Vincent,
Pascal. Generalized denoising auto-encoders as gener-
ative models. In Advances in Neural Information Pro-
cessing Systems, pp. 899-907, 2013.

Blei, David M and Jordan, Michael I. Variational methods
for the dirichlet process. In Proceedings of the twenty-

first international conference on Machine learning, pp.
12. ACM, 2004.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray,
and Wierstra, Daan. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424, 2015.

Carin, Lawrence, Blei, David M, and Paisley, John W. Vari-
ational inference for stick-breaking beta process priors.
In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pp. 889-896, 2011.

Chen, Ning, Zhu, Jun, Chen, Jianfei, and Zhang, Bo.
Dropout training for support vector machines. In Tiventy-
Eighth AAAI Conference on Artificial Intelligence, 2014.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Re-
search, 12:2121-2159, 2011.

Fan, Kai, Wang, Ziteng, Beck, Jeff, Kwok, James, and
Heller, Katherine. Fast second-order stochastic back-
propagation for variational inference. In Advances in
Neural Information Processing Systems, 2015.

Gan, Zhe, Chen, Changyou, Henao, Ricardo, Carlson,
David, and Carin, Lawrence. Scalable deep poisson
factor analysis for topic modeling. In Proceedings of
the 32nd International Conference on Machine Learn-
ing (ICML-15), pp. 1823-1832, 2015.

Ghahramani, Zoubin and Griffiths, Thomas L. Infinite la-
tent feature models and the indian buffet process. In

Advances in neural information processing systems, pp.
475482, 2005.

Hinton, Geoffrey E and Salakhutdinov, Ruslan R. Repli-
cated softmax: an undirected topic model. In Advances

in neural information processing systems, pp. 1607—
1614, 2009.

Hjort, Nils Lid. Nonparametric bayes estimators based on
beta processes in models for life history data. The Annals
of Statistics, pp. 1259-1294, 1990.

Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert.
Multilayer feedforward networks are universal approxi-
mators. Neural networks, 2(5):359-366, 1989.

Adam: A
arXiv preprint

Kingma, Diederik and Ba, Jimmy.
method for stochastic optimization.
arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kingma, Diederik P, Salimans, Tim, and Welling, Max.
Variational dropout and the local reparameterization
trick. arXiv preprint arXiv:1506.02557, 2015.

Larochelle, Hugo and Lauly, Stanislas. A neural autore-
gressive topic model. In Advances in Neural Information
Processing Systems, pp. 2708-2716, 2012.

Maaten, Laurens, Chen, Minmin, Tyree, Stephen, and
Weinberger, Kilian Q. Learning with marginalized cor-
rupted features. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pp. 410—
418, 2013.

Martens, James. Deep learning via hessian-free optimiza-
tion. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pp. 735-742,
2010.

Mnih, Andriy and Gregor, Karol. Neural variational infer-
ence and learning in belief networks. In Proceedings of

the 31st International Conference on Machine Learning,
pp- 1791-1799, 2014.

Neal, Radford M et al. Mcmc using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2:113-162,
2011.

Nesterov, Yurii. A method of solving a convex program-
ming problem with convergence rate o (1/k2). In Soviet
Mathematics Doklady, volume 27, pp. 372-376, 1983.

Ngiam, Jiquan, Coates, Adam, Lahiri, Ahbik, Prochnow,
Bobby, Le, Quoc V, and Ng, Andrew Y. On optimization
methods for deep learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-
11), pp. 265-272, 2011.

Paisley, John and Carin, Lawrence. Nonparametric fac-
tor analysis with beta process priors. In Proceedings of
the 26th Annual International Conference on Machine
Learning, pp. 777-784. ACM, 2009.

Paisley, John W, Zaas, Aimee K, Woods, Christopher W,
Ginsburg, Geoffrey S, and Carin, Lawrence. A stick-
breaking construction of the beta process. In Proceed-
ings of the 27th International Conference on Machine
Learning (ICML-10), pp. 847-854, 2010.

Scalable Non-linear Beta Process Factor Analysis

Polyak, Boris Teodorovich. Some methods of speeding up
the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4(5):1-
17, 1964.

Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan.
Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning (ICML-
14), pp. 1278-1286, 2014.

Shah, Amar, Knowles, David, and Ghahramani, Zoubin.
An empirical study of stochastic variational inference al-
gorithms for the beta bernoulli process. In Proceedings
of the 32nd International Conference on Machine Learn-
ing (ICML-15), pp. 1594-1603, 2015.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929-1958, 2014.

Teh, Yee Whye, Thiéry, Alexandre, and Vollmer, Sebas-
tian. Consistency and fluctuations for stochastic gradi-
ent langevin dynamics. arXiv preprint arXiv:1409.0578,
2014.

Thibaux, Romain and Jordan, Michael I. Hierarchical beta
processes and the indian buffet process. In International
conference on artificial intelligence and statistics, pp.
564-571, 2007.

Van Der Vaart, Aad W and Wellner, Jon A. Weak Conver-
gence. Springer, 1996.

Wager, Stefan, Wang, Sida, and Liang, Percy S. Dropout
training as adaptive regularization. In Advances in Neu-
ral Information Processing Systems, pp. 351-359, 2013.

Welling, Max and Teh, Yee W. Bayesian learning via
stochastic gradient langevin dynamics. In Proceedings
of the 28th International Conference on Machine Learn-
ing (ICML-11), pp. 681-688, 2011.

Zhou, Mingyuan, Chen, Haojun, Ren, Lu, Sapiro,
Guillermo, Carin, Lawrence, and Paisley, John W. Non-
parametric bayesian dictionary learning for sparse image
representations. In Advances in neural information pro-
cessing systems, pp. 2295-2303, 2009.

